Answer on Question \#77577, Chemistry / Physical Chemistry

Question:

A 0.17 g sample of a Group 4 chloride, XCl_{4}, reacted with water to produce an oxide, XO_{2}, and HCl .

Equation: $1 \mathrm{XCl}_{4}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{XO}_{2}(\mathrm{~s})+4 \mathrm{HCl}(\mathrm{aq})$
The HCl produced was absorbed in $100 \mathrm{~cm}^{3}$ of $0.10 \mathrm{~mol} / \mathrm{dm}^{3}$ sodium hydroxide solution (an excess). In a titration, the unreacted sodium hydroxide solution required $30.0 \mathrm{~cm}^{3}$ of $0.20 \mathrm{~mol} / \mathrm{dm}^{3}$ hydrochloric acid for complete neutralization.
(a) Calculate the amount, in moles, of hydrochloric acid used in the titration to neutralize the unreacted sodium hydroxide solution.
amount = \qquad mol

Solution:

Amount of HCl used in the titration: $0.20 \cdot 0.0300=\mathbf{0 . 0 0 6} \mathbf{~ m o l}$

I suppose the full solution should be as follows:
Amount of unreacted NaOH : $\mathbf{0 . 0 0 6} \mathbf{~ m o l}$

Starting amount of $\mathrm{NaOH}: \quad 0.10 \cdot 0.100=\mathbf{0 . 0 1} \mathbf{~ m o l}$

Amount of reacted $\mathrm{NaOH}: \quad 0.01 \mathbf{- 0 . 0 0 6} \mathbf{= 0 . 0 0 4} \mathbf{~ m o l}$

Amount of produced HCl : $\mathbf{0 . 0 0 4} \mathbf{~ m o l}$

Amount of $\mathrm{XCl}_{4}: 0.004 / 4=\mathbf{0 . 0 0 1} \mathbf{~ m o l}$

Molar Weight of $\mathrm{XCl}_{4}: 0.17 / 0.001=170 \mathrm{~g} / \mathrm{mol}$

Atomic weight of X : $170-(4 \cdot 35.45)=\mathbf{2 8 . 2 0} \mathbf{g} / \mathrm{mol}$
X is Silicon (Si)
XCl_{4} is SiCl_{4}

Answer:

(a) amount $=0.006 \mathrm{~mol}$ (also see solution above)

