Answer on Question \#77466, Chemistry / Inorganic Chemistry

The reaction
Co $2++6 \mathrm{NH} 3$ => [Co(NH3)6]2+
has an equilibrium constant of $5.0 \times 10^{\wedge} 4$. Solutions were mixed so that the initial concentration of the cobaltous ion was 0.127 M and the ammonia was 1.80 M . What are the equilibrium concentrations of all three species in the reaction?

Solution

$\mathrm{Co}^{2+}+6 \mathrm{NH}_{3} \leftrightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$

$$
K_{c}=\frac{\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}}{\left[\mathrm{Co}^{2+}\right]\left[\mathrm{NH}_{3}\right]^{6}}
$$

The equilibrium constant $K_{c}=5.0 \cdot 10^{4}$ is large, so we should start with as much product as possible. Co^{2+} is a limiting reactant $\left(\mathrm{c}\left(\mathrm{Co}^{2+}\right)=0.127 \mathrm{M}, \mathrm{c}\left(\mathrm{NH}_{3}\right)\right.$ should be $0.127 \cdot 6=0.762$, but the concentration of NH_{3} is 1.8 M).

If all of 0.127 M of Co^{2+} reacts to form product the concentrations would be:
$\left[\mathrm{Co}^{2+}\right]=0.127-0.127=0 \mathrm{M}$
$\left[\mathrm{NH}_{3}\right]=1.8-0.127 \cdot 6=1.038 \mathrm{M}$
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}=0.127 \mathrm{M}$
Using these "shifted" values as initial concentrations with x as the free Co^{2+} ion concentration at equilibrium gives the following ICE table:

	$\mathrm{Co}^{2+}+6 \mathrm{NH}_{3} \leftrightarrow$		$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
Initial concentration (M)	0	1.038	0.127
Change (M)	+x	+6 x	-x
Equilibrium concentration (M)	x	$1.038+6 \mathrm{x}$	$0.127-\mathrm{x}$

Since we are starting close to equilibrium, x should be small so that
$1.038+6 x \cong 1.038 \mathrm{M}$
$0.127-x \cong 0.127 \mathrm{M}$
$K_{c}=\frac{(0.127-x)}{x(1.038+6 x)^{6}} \cong \frac{0.127}{x \times 1.038^{6}}=5.0 \times 10^{4}$
$x=2.031 \cdot 10^{-6}$

Select the smallest concentration for the 5\% rule.
$\frac{2.031 \times 10^{-6}}{0.127} \times 100 \%=1.599 \times 10^{-3} \%$
This value is much less than 5%, so the assumptions are valid.
The concentrations at equilibrium are:
$\left[\mathrm{Co}^{2+}\right]=\mathrm{x}=2.031 \cdot 10^{-6} \mathrm{M}$
$\left[\mathrm{NH}_{3}\right]=1.038+6 \mathrm{x}=1.038+6 \cdot 2.031 \cdot 10^{-6}=1.038 \mathrm{M}$
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}=0.127-\mathrm{x}=0.127-2.031 \cdot 10^{-6}=0.127 \mathrm{M}$
By starting with the maximum amount of product, this system was near equilibrium and the change (x) was very small. With only a small change required to get to equilibrium, the equation for x was greatly simplified and gave a valid result well within the 5% error maximum.

Answer: $\left[\mathrm{Co}^{2+}\right]=2.031 \cdot 10^{-6} \mathrm{M}$

$$
\begin{aligned}
& {\left[\mathrm{NH}_{3}\right]=1.038 \mathrm{M}} \\
& {\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}=0.127 \mathrm{M}}
\end{aligned}
$$

