Answer on Question \#77423, Chemistry / Organic Chemistry

Question:

A student prepared a 20 mL sample of hydrochloric acid solution. The sample was diluted with distilled water. The buret was filled completely with the titrant, which is 0.1 M NaOH , until it reached the top mark. The sample was later titrated with a 0.10 M NaOH solution. The endpoint was reached after the addition of 15 mL of titrant (NaOH). Calculate the concentration of HCL in molarity.

Also find these info:

$$
\begin{aligned}
& \text { Initial Volume reading of } \mathrm{NaOH}(\mathrm{~mL}) \\
& \text { Final Volume reading of } \mathrm{NaOH}(\mathrm{~mL}) \\
& \text { Volume of } \mathrm{NaOH} \text { used }(\mathrm{mL}) \\
& \text { Molarity of } \mathrm{NaOH}(\mathrm{~mol} / \mathrm{L}) \\
& \text { Moles of } \mathrm{NaOH}(\mathrm{~mol}) \\
& \text { Moles of } \mathrm{HCL}(\mathrm{~mol}) \\
& \text { Volume of } \mathrm{HCL} \text { used }(\mathrm{mL}) \\
& \text { Molarity of } \mathrm{HCL}(\mathrm{~mol} / \mathrm{L})
\end{aligned}
$$

Solution:

Volume of NaOH titrant: $15 \mathrm{~mL}=0.015 \mathrm{~L}$

Amount of $\mathrm{NaOH}: \quad 0.10 \cdot 0.015=0.0015 \mathrm{~mol}$

Balanced equation: $\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$

So the amount of HCl is same: 0.0015 mol

Volume of a sample of HCl solution: $20 \mathrm{~mL}=0.020 \mathrm{~L}$

Molarity of $\mathrm{HCl}: ~ 0.0015 / 0.020=0.075 \mathrm{~mol} / \mathrm{L}$

Answer:

Additional info:
Initial Volume reading of $\mathrm{NaOH}: \mathbf{0} \mathbf{m L}$ (from task)
Final Volume reading of $\mathrm{NaOH}: 15 \mathrm{~mL}$ (from task)

Volume of NaOH used: 15 mL (from task)

Molarity of $\mathrm{NaOH}: \mathbf{0 . 1 0} \mathbf{~ m o l} / \mathrm{L}$ (from task)
Moles of $\mathrm{NaOH}: \mathbf{0 . 0 0 1 5} \mathbf{~ m o l}$ (see solution)

Moles of HCL: $\mathbf{0 . 0 0 1 5} \mathbf{~ m o l}$ (see solution)
Volume of HCL used: $\mathbf{2 0} \mathbf{~ m L}$ (from task)

Molarity of HCL: $\mathbf{0 . 0 7 5} \mathbf{~ m o l} / \mathrm{L}$ (see solution)

Answer provided by AssignmentExpert.com

