Question \#77235, Chemistry / Other

A 1.047 g sample of canned tuna was analyzed by the Kjeldahl method; 24.61 mL of 0.1180 M HCl were required to titrate the liberated ammonia. Calculate the percentage of nitrogen in the sample. [

Solution:

Chemical equation:

$$
\begin{aligned}
& \mathrm{NH}_{3}+\mathrm{HCl}=\mathrm{NH}_{4} \mathrm{Cl} \\
& n\left(\mathrm{NH}_{3}\right)=n(\mathrm{HCl})=c(\mathrm{HCl}) \times V(\mathrm{HCl})=0.1180 \frac{\mathrm{~mol}}{\mathrm{~L}} \times 0.02461 \mathrm{~L}=0.002904 \mathrm{~mol} \\
& n(N)=n\left(N H_{3}\right)=0.002904 \mathrm{~mol} \\
& A(N)=14.0067 \frac{\mathrm{~g}}{\mathrm{~mol}} \\
& m(N)=14.0067 \frac{\mathrm{~g}}{\mathrm{~mol}} \times 0.002904 \mathrm{~mol}=0.04068 \mathrm{~g} \\
& \%(N)=\frac{0.04068 \mathrm{~g}}{1.047 \mathrm{~g}} \times 100 \%=3.88 \%
\end{aligned}
$$

Answer:

3.88\%

Answer provided by AssignmentExpert.com

