Answer on Question \#77059, Chemistry / Organic Chemistry

Question:

Temperature coefficient of a reaction $\gamma=4$, rate of reaction at 40 degree Celsius is 0.5 $\mathrm{mol} /(1 \cdot \mathrm{~s})$, what will be the rate of reaction at 80 degree Celsius?

Solution:

The Van ' t Hoff rule for the rate of reaction:

$$
\begin{aligned}
& \mathrm{r}_{2}=\mathrm{r}_{1} \cdot \gamma^{\frac{T_{2}-T_{1}}{10}}, \text { where } \\
& r_{1} \text { - rate of reaction at temperature } \mathrm{T}_{1} \\
& r_{2} \text { - rate of reaction at temperature } T_{2} \\
& \ell \text { - temperature coefficient of a reaction }
\end{aligned}
$$

So:

$$
r_{2}=0.5 \cdot 4^{\frac{80-40}{10}}=0.5 \cdot 4^{4}=128 \mathrm{~mol} /(1 \cdot \mathrm{~s})
$$

Answer:

$128 \mathrm{~mol} /(1 \cdot \mathrm{~s})$

