Answer on Question \#76717 - Chemistry - Other

Task:

Consider the following reaction at equilibrium:
$\mathrm{C}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})<-->\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$

Which of the following conditions will increase the partial pressure of CO?
A) decreasing the partial pressure of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$;
B) removing $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ from the system;
C) decreasing the volume of the reaction vessel;
D) decreasing the pressure in the reaction vessel;
E) increasing the amount of carbon in the system.

Solution:

A) Wrong. By Le Chateliers principle equilibrium will adjust to oppose the change, produce more $\mathrm{H}_{2} \mathrm{O}$, reducing CO .
B) Wrong. Same explanation as for A.
C) Wrong. Decreasing volume equivalent to increasing pressure, by Le Chatelier this is opposed by system decreasing its volume, ie equilibrium shifts to left, more $\mathrm{H}_{2} \mathrm{O}$ and less CO (and H_{2}).
D) Correct. By Le Chatelier equilibrium shifts to right, to produce a larger volume of gas so opposing the pressure decrease.
E) Wrong. The C in the solid state (has a constant and small vapour pressure) is irrelavent to the equilibrium in the gaseous phase.

Answer: D) decreasing the pressure in the reaction vessel.

