Question:

 solution. Calculate the pH for (a) the initial solution (the HC 2 H 3 O 2), (b) the point at which 37.5 ml of the base has been added, (c) the equivalence point (d) after adding 80.0 ml of 0.20 M NaOH

Solution:

a) $\mathrm{n}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=\mathrm{C}^{*} \mathrm{~V}=0.15 * 0.1=0.015 \mathrm{~mol}$.
$\mathrm{CH}_{3} \mathrm{COOH}=\mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$;
$\mathrm{Ka}=\left[\mathrm{H}^{+}\right]^{*}\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right] /\left[\mathrm{CH}_{3} \mathrm{COOH}\right]$
$1.8^{*} 10^{-5}=x^{2} / 0.15 ;$
$x=\operatorname{sqrt}\left(1.8 * 10^{-5} * 0.15\right)=0.0016$
$\left[\mathrm{H}^{+}\right]=0.0016 \mathrm{~mol} ;$
$\mathrm{pH}=2.8$

