Answer on Question \#76319, Chemistry / General Chemistry

A chemist must prepare $875 . \mathrm{mL}$
of 3.00 M
aqueous nickel(II) chloride NiCl 2
working solution. He'll do this by pouring out some 3.43 M
aqueous nickel(II) chloride stock solution into a graduated cylinder and diluting it with distilled water.

Calculate the volume in mL
of the nickel(II) chloride stock solution that the chemist should pour out.

Solution

$\mathrm{V}_{2}=875 \mathrm{~mL}=0.875 \mathrm{~L}$
$\mathrm{c}_{2}=3.00 \mathrm{M}$
$\mathrm{C}_{1}=3.43 \mathrm{M}$
$V_{1}-?$

Find amount of chemical substance of NiCl_{2} in the working solution:
$\mathrm{c}=\mathrm{n} / \mathrm{V} \Rightarrow \mathrm{n}=\mathrm{c} \cdot \mathrm{V}$
$\mathrm{n}_{2}\left(\mathrm{NiCl}_{2}\right)=\mathrm{C}_{2} \cdot \mathrm{~V}_{2} ;$
$\mathrm{n}_{2}\left(\mathrm{NiCl}_{2}\right)=3.00 \cdot 0.875=2.625(\mathrm{~mol})$.
Amount of chemical substance is the same in the working solution and in the stock solution:
$\mathrm{n}_{2}\left(\mathrm{NiCl}_{2}\right)=\mathrm{n}_{1}\left(\mathrm{NiCl}_{2}\right) ;$
$\mathrm{n}_{1}\left(\mathrm{NiCl}_{2}\right)=2.625 \mathrm{~mol}$.

Find volume of stock solution:
$\mathrm{c}=\mathrm{n} / \mathrm{V} \Rightarrow \mathrm{V}=\mathrm{n} / \mathrm{c}$;
$\mathrm{V}_{1}=\mathrm{n}_{1}\left(\mathrm{NiCl}_{2}\right) / \mathrm{c}_{1} ;$
$\mathrm{V}_{1}=2.625 / 3.43=0.765(\mathrm{~L})=765 \mathrm{~mL}$.
Answer: 765 mL

