Answer on Question \#76271, Chemistry / Inorganic Chemistry

a) The dipole moment of HBr is $2.60 \cdot 10^{\wedge}-30 \mathrm{C} \cdot \mathrm{m}$ and interatomic distance 141 pm . What is the percentage ionic character of HBr ?
b) Draw all of the stereoisomers of 2,3-butandiol, label meso compounds and pairs of enantiomer.

Solution

Question a

a) To determine the percentage ionic character of HBr we should find the ratio of $\mu_{\exp }$ experimentally obtained to the $\mu_{\text {theor }}$ mathematically calculated. When calculating $\mu_{\text {theor }}$ we make an assumption that one electron from hydrogen is completely transferred to bromine.

The percentage ionic character $=\left(\mu_{\exp } / \mu_{\text {theor }}\right) \cdot 100 \%$
Find $\mu_{\text {theor: }}$
$\mu_{\text {theor }}=q \cdot r$,
Where q is charge of an electron, $\mathrm{q}=1.602 \cdot 10^{-19} \mathrm{C}$,
r - interatomic distance, $r=141 \mathrm{pm}=1.41 \cdot 10^{-10} \mathrm{~m}$
$\mu_{\text {theor }}=\mathrm{q}=1.602 \cdot 10^{-19} \mathrm{C} \cdot 1.41 \cdot 10^{-10} \mathrm{~m}=2.259 \cdot 10^{-29} \mathrm{C} \cdot \mathrm{m}$
The percentage ionic character $=\left(2.60 \cdot 10^{-30} \mathrm{C} \cdot \mathrm{m} / 2.259 \cdot 10^{-29} \mathrm{C} \cdot \mathrm{m}\right) \cdot 100 \%=12 \%$.

Answer: 12\%

Question b

b) Enantiomer (optical isomer) is one of two stereoisomers that are mirror images of each other that are non-superposable (not identical). Meso isomer is a stereoisomer with an identical or superimposable mirror image i.e., a non-optically active member of a set of stereoisomers, at least two of which are optically active.

2,3-butandiol has three stereoisomers (there are four forms are shown, where $C=D, D$ and C are the same forms):

A

B

C

D
A and B are enantiomers, C and D are the same form, C is meso form.
$A=(2 R, 3 R)-2,3$-butandiol (optically active)
$B=(2 R, 3 R)-2,3$-butandiol (optically active)
C=D = meso-2,3-butandiol (non-optically active, has plane of symmetry).

