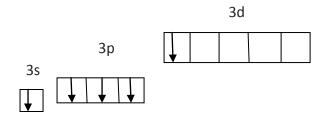

Answer on Question #76168, Chemistry / Inorganic Chemistry

Q. Explain the type of hybridization in phosphorus pentafluoride.


Solution

Atom P needs five orbitals to form five P-Cl bonds in PCl₅.

Electron structure of P atom is:

In ground sate atom P has three unpaired electrons and can form three bounds. To form 5 bounds atom P goes into an exited state, where atom P has five unpaired electrons: ${}_{15}P$ [Ne]3s ${}^{1}3p{}^{3}3d{}^{1}$ (exited state)

Five orbitals (one s, three p and one d) are hybridized to form five P-Cl bounds, therefore hybridization of P in PCl_5 is sp^3d .

Hybridization can be calculated by using a formula:

$$H = \frac{1}{2} \cdot (V + M - C + A),$$

V – number of free electrons of central atom (P has 5 free electrons);

M – number of monovalent atoms linked to the central atoms (5 monovalent atoms of CI)

C – cationic charge of the compound (C=0)

A – anionic charge of the compound (A= 0)

$$H = \frac{1}{2} (5+5-0+0) = 5$$

Н	2	3	4	5	6
Type of	sp	sp ²	sp ³	sp ³ d	sp ³ d ²
hybridization					

For $PCl_5 H = 5$ therefore hybridization of P atom is sp^3d .

A molecule of PCl₅ has trigonal bipyramidal structure (VSEPR theory):

Answer provided by AssignmentExpert.com