Answer:

From the gas laws we know that

$$
\frac{P_{1} \cdot V_{1}}{T_{1}}=\frac{P_{2} \cdot V_{2}}{T_{2}} .
$$

From the condition of the task we also know that volume doesn't change $\mathrm{V}_{1}=\mathrm{V}_{2}$

Than formula will be

$$
\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}
$$

$P_{1}=790 . \mathrm{mmHg} \mathrm{P}_{2}=740 . \mathrm{mmHg} . \mathrm{T}_{1}=50^{\circ} \mathrm{C}$

$$
T_{2}=\frac{P_{2} \cdot T_{1}}{P_{1}}
$$

$\mathrm{T}_{2}=46,8 \mathrm{C}$

