Answer on Question \#75754, Chemistry / Inorganic Chemistry

Using Bohr atomic model drive expression for calculating orbits in He+ using this expression calculate the radius of fourth orbital of he+ion

Solution

1. Expression for calculating orbits in $\mathrm{He}+$.

Coulomb force is centripetal when electron moves in orbit. Then

According to Bohr postulates the angular momentum of stationary electron is quantized:
mur $=n h / 2 \pi ; \quad \Rightarrow v=n h / 2 \pi m r$.

Then

$$
r=\frac{Z e^{2}}{4 \pi \varepsilon_{0} m v^{2}}=\frac{Z e^{2} 4 \pi^{2} m^{2} r^{2}}{4 \pi \varepsilon_{0} m n^{2} h^{2}}=\frac{Z e^{2} \pi m r^{2}}{\varepsilon_{0} n^{2} h^{2}} \Rightarrow r=\frac{\varepsilon_{0} h^{2}}{Z e^{2} \pi m} \cdot n^{2}, \text { where } n=1,2,3, \ldots
$$

$Z\left(\mathrm{He}^{+}\right)=2$, then

$$
r=\frac{\varepsilon_{0} h^{2}}{2 \mathrm{e}^{2} \pi \mathrm{~m}} \cdot n^{2}, \text { where } \mathrm{n}=1,2,3, \ldots
$$

2. The radius of fourth orbital of He^{+}ion

$$
r_{4}=\frac{\varepsilon_{0} h^{2}}{Z e^{2} \pi m} \cdot n^{2}=\frac{8.85 \cdot 10^{-12} \cdot\left(6.626 \cdot 10^{-34}\right)^{2}}{2 \cdot\left(1.6 \cdot 10^{-19}\right)^{2} \cdot 3.14 \cdot 9.1 \cdot 10^{-31}} \cdot 4^{2}=4.25 \cdot 10^{-10}(\mathrm{~m})
$$

Answer: 1.

$$
r=\frac{\varepsilon_{0} h^{2}}{2 e^{2} \pi m} \cdot n^{2}, \text { where } n=1,2,3, \ldots
$$

2. $r_{4}=4.25 \cdot 10^{-10} \mathrm{~m}$
