The label on a stock bottle of acid reads: 56% by mass and 1.25 specific gravity. If the molar mass of the acid is 56 , what is the volume of the acid in cm^{3} required to prepare $250 \mathrm{~cm}^{3}$ of 1.5 molar acid?

1. Mass percentage:

$$
c_{\% w / w}=\frac{m(\text { acid })}{m(\text { solution })} \cdot 100 \%
$$

so

$$
m(\text { acid })=\frac{c_{\% w / w} \cdot m(\text { solution })}{100 \%}
$$

2. Specific gravity:

$$
S G=\frac{\rho_{\text {solution }}}{\rho_{\mathrm{H}_{2} \mathrm{O}}}
$$

so

$$
\rho_{\text {solution }}=S G \cdot \rho_{\mathrm{H}_{2} \mathrm{O}}
$$

3. Density:

$$
\rho_{\text {solution }}=\frac{m(\text { solution })}{V(\text { solution })}
$$

so

$$
V(\text { solution })=\frac{m(\text { solution })}{\rho(\text { solution })}=\frac{m(\text { solution })}{S G \cdot \rho_{\mathrm{H}_{2} \mathrm{O}}}
$$

4. Molar concentration

$$
\begin{gathered}
C_{1}=\frac{n(\text { acid })}{V(\text { solution })}=\frac{m(\text { acid })}{M(\text { acid }) \cdot V(\text { solution })}=\frac{\frac{C_{\% w / w} \cdot m(\text { solution })}{100 \%}}{M(\text { acid }) \cdot \frac{m(\text { solution })}{S G \cdot \rho_{H_{2} \mathrm{O}}}}= \\
=\frac{c_{\% w / w} \cdot m(\text { solution }) \cdot S G \cdot \rho_{H_{2} \mathrm{O}}}{M(\text { acid }) \cdot m(\text { solution }) \cdot 100 \%}=\frac{c_{\% w / w} \cdot S G \cdot \rho_{\mathrm{H}_{2} \mathrm{O}}}{M(\text { acid }) \cdot 100 \%} \\
{\left[C_{1}\right]=\frac{\frac{\% \cdot \frac{\%}{l}}{\frac{\#}{m o l e} \cdot \%}=\frac{\text { mole }}{l}}{C_{1}=\frac{56 \cdot 1,25 \cdot 1000}{56 \cdot 100}=12,5\left(\frac{\text { mole }}{l}\right)}}
\end{gathered}
$$

5. $C_{1} \cdot V_{1}=C_{2} \cdot V_{2}$
where:
$V_{1}=$ volume of starting solution needed to make the new solution
$C_{1}=$ concentration of starting solution
$V_{2}=$ final volume of new solution
$C_{2}=$ final concentration of new solution

$$
V_{1}=\frac{C_{2} \cdot V_{2}}{C_{1}}=\frac{1,5 \cdot 250}{12,5}=30\left(\mathrm{~cm}^{3}\right)
$$

Answer: $30 \mathrm{~cm}^{3}$.

