Answer on question \#74689

$$
\begin{aligned}
& 2 B=12.604 \mathrm{~m}^{-1} \\
& B=\frac{12.604}{2}=6.302 \mathrm{~m}^{-1} \\
& B=\frac{h}{8 \pi^{2} I C} \\
& I=\text { moment of inertia } \\
& I=\frac{h}{8 \pi^{2} B C} \\
& I=\frac{6.626 \times 10^{-34} \mathrm{~kg} \mathrm{~m}^{2} 8^{71}}{8 \times(3.14)^{2} \times 6.302 \times 2.998 \times 10^{8} \mathrm{~ms}^{-7}} \\
& \text { \# } I \text { (moment of Inentia) }=4.44 \times 10^{-45} \mathrm{Kg} \mathrm{~m}^{2} \\
& \begin{array}{rl|l}
I & =\mu r^{2} & \mu=\frac{m_{A 1} m_{H}}{M \mu A 1+M_{H}}=\frac{27 \times 24 \times 1}{27+24+1} \\
r & =\sqrt{I / \mu}=\sqrt{\frac{4.44}{.99845} \times 10^{-45}} & \mu=.99845 \\
\# M & =6.67 \times 10^{-23} \mathrm{~m} &
\end{array}
\end{aligned}
$$

Answer provided by AssignmentExpert.com

