Question \#73788, Chemistry / Physical Chemistry / Completed

To make a thin film of SiO2 in a vacuum chamber, you start with $1.00 \mathrm{~mm} \times 1.00 \mathrm{~mm}$ piece of Mo metal as the substrate to build your film on. The first step of the process is to put down a 0.010 mm thick film of Si atoms onto the piece of Mo metal. This Si film has a density of 8.41 x $10^{\wedge} 22$ atoms $/ \mathrm{mL}$. The next step is to oxidize the film with O 2 gas. You need two Oxygen atoms for every one silicon atom you have in the film. How many O atoms do you need to make the SiO2 film?
b) This process in only $20 . \%$ efficient (meaning 1 atom in 5 react). What is the minimum number of O atoms you need to make the SiO2 film?
c) If there are $1.4 \times 10^{\wedge} 22 \mathrm{O} 2$ molecules $/ \mathrm{mL}$ of gas, how many L do you need?

Solution

$\mathrm{Si}+\mathrm{O}_{2}=\mathrm{SiO}_{2}$
The volume of the Si layer: $\mathrm{V}=1 \mathrm{~mm}^{2} \times 0.010 \mathrm{~mm}=0.010 \mathrm{~mm}^{3}$ or $1 \mathrm{e}-5 \mathrm{~mL}$.
The number of atoms of Si: $1 \mathrm{e}-5 \mathrm{~mL} \times 8.41 \times 10^{\wedge} 22$ atoms $/ \mathrm{mL}=8.41 \mathrm{e}+17$ atoms.
The number of O atoms (theory): $8.41 \mathrm{e}+17 \cdot 2=1.682 \mathrm{e}+18$.
b)
$1.682 \mathrm{e}+18$ atoms $\cdot 100 \% / 20 \%=8.41 \mathrm{e}+18$ atoms.
c)
$8.41 \mathrm{e}+18$ atoms $/ 1.4 \times 10^{\wedge} 22 \mathrm{O} 2$ molecules $/ \mathrm{mL}=6.007 \mathrm{e}-4 \mathrm{~mL}$

Answer: $\quad 1.682 \mathrm{e}+18 ; 8.41 \mathrm{e}+18 ; 6.007 \mathrm{e}-4 \mathrm{~mL}$.

