Answer on Question #73501 - Chemistry - Inorganic Chemistry

Equilibrium involving $SO_2(g)$, $O_2(g)$ and $SO_3(g)$ is important in sulfuric acid production. When a 0.0200 mol sample of SO_3 is introduced into an evacuated 1.52 L vessel at 900 K, 0.0142 mol, SO_3 is found to be present at equilibrium. Calculate the value of K_p for the dissociation of $SO_3(g)$ at 900 K?

Solution:

$$2SO_3(g) \rightarrow 2SO_2(g) + O_2(g)$$

1. Calculate the amount of SO₃ which has reacted away:

$$\Delta n(SO_3) = n(SO_3)_{initial} - n(SO_3)_{equilibrium} = 0.0200 \text{ mol} - 0.0142 \text{ mol} = 0.0058 \text{ mol}$$

2. Calculate amount of sulfur dioxide and oxygen.

Dissociation reaction is given by:

$$SO_3(g) \longleftrightarrow SO_2(g) + (1/2) O_2(g)$$

So one mole of SO_2 and one half mole of O_2 is formed per mole of SO_3 reacted away.

Hence:

$$n(SO_2)_{equilibrium} = \Delta n(SO_3) = 0.0058 \text{ mol}$$

$$n(O_2)_{equilibrium} = (1/2) \cdot \Delta n(SO_3) = 0.0029 \text{ mol}$$

3. Calculate equilibrium partial pressures.

Assuming ideal gas mixture partial pressures are given by

$$p(i) = n(i) \cdot R \cdot T/V$$

(R - universal gas constant, T - absolute temperature, V - Volume)

 $p(SO_3) = 0.082 \text{ L-atm/(K-mol)} \times 900 \text{ K} \times 0.0142 \text{ mol} / 1.52 \text{ L} = 48.6 \text{ atm/mol} \times 0.0142 \text{ mol} = 0.690 \text{ atm}$

$$p(SO_2) = 48.6 \text{ atm/mol} \times 0.0058 \text{ mol} = 0.282 \text{ atm}$$

$$p(O_2) = 48.6 \text{ atm/mol} \times 0.0029 \text{ mol} = 0.141 \text{ atm}$$

4. Calculate equilibrium constant

According to reaction equation:

$$K_p = p^2(SO_2) \times p(O_2) / p^2(SO_3) = (0.282)^2 \times 0.141 / (0.690)^2 = 0.0235 = 0.024$$

Answer provided by AssignmentExpert.com