Answer on Question \#73501 - Chemistry - Inorganic Chemistry

Equilibrium involving $\mathrm{SO}_{2}(\mathrm{~g}), \mathrm{O}_{2}(\mathrm{~g})$ and $\mathrm{SO}_{3}(\mathrm{~g})$ is important in sulfuric acid production. When a 0.0200 mol sample of SO_{3} is introduced into an evacuated 1.52 L vessel at $900 \mathrm{~K}, 0.0142 \mathrm{~mol}$, SO_{3} is found to be present at equilibrium. Calculate the value of K_{p} for the dissociation of $\mathrm{SO}_{3}(\mathrm{~g})$ at 900 K ?

Solution:

$$
2 \mathrm{SO}_{3}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

1. Calculate the amount of SO_{3} which has reacted away:
$\Delta \mathrm{n}\left(\mathrm{SO}_{3}\right)=\mathrm{n}\left(\mathrm{SO}_{3}\right)_{\text {initial }}-\mathrm{n}\left(\mathrm{SO}_{3}\right)_{\text {equilibrium }}=0.0200 \mathrm{~mol}-0.0142 \mathrm{~mol}=0.0058 \mathrm{~mol}$
2. Calculate amount of sulfur dioxide and oxygen.

Dissociation reaction is given by:
$\mathrm{SO}_{3}(\mathrm{~g}) \leftarrow \rightarrow \mathrm{SO}_{2}(\mathrm{~g})+(1 / 2) \mathrm{O}_{2}(\mathrm{~g})$
So one mole of SO_{2} and one half mole of O_{2} is formed per mole of SO_{3} reacted away.
Hence:
$\mathrm{n}\left(\mathrm{SO}_{2}\right)_{\text {equilibrium }}=\mathrm{n}\left(\mathrm{SO}_{3}\right)=0.0058 \mathrm{~mol}$
$n\left(\mathrm{O}_{2}\right)_{\text {equilibrium }}=(1 / 2) \cdot \Delta n\left(\mathrm{SO}_{3}\right)=0.0029 \mathrm{~mol}$
3. Calculate equilibrium partial pressures.

Assuming ideal gas mixture partial pressures are given by
$\mathrm{p}(\mathrm{i})=\mathrm{n}(\mathrm{i}) \cdot \mathrm{R} \cdot \mathrm{T} / \mathrm{V}$
(R - universal gas constant, T - absolute temperature , V - Volume)
$\mathrm{p}\left(\mathrm{SO}_{3}\right)=0.082 \mathrm{~L} \cdot \mathrm{~atm} /(\mathrm{K} \cdot \mathrm{mol}) \times 900 \mathrm{~K} \times 0.0142 \mathrm{~mol} / 1.52 \mathrm{~L}=48.6 \mathrm{~atm} / \mathrm{mol} \times 0.0142 \mathrm{~mol}=$ 0.690 atm
$\mathrm{p}\left(\mathrm{SO}_{2}\right)=48.6 \mathrm{~atm} / \mathrm{mol} \times 0.0058 \mathrm{~mol}=0.282 \mathrm{~atm}$
$\mathrm{p}\left(\mathrm{O}_{2}\right)=48.6 \mathrm{~atm} / \mathrm{mol} \times 0.0029 \mathrm{~mol}=0.141 \mathrm{~atm}$
4. Calculate equilibrium constant

According to reaction equation:
$\mathrm{K}_{\mathrm{p}}=\mathrm{p}^{2}\left(\mathrm{SO}_{2}\right) \times \mathrm{p}\left(\mathrm{O}_{2}\right) / \mathrm{p}^{2}\left(\mathrm{SO}_{3}\right)=(0.282)^{2} \times 0.141 /(0.690)^{2}=0.0235=0.024$

