Question: Magnesium oxide decomposes into magnesium and oxygen. If 16.12 g of magnesium oxide decomposes to form 9.72 g of magnesium, what mass of oxygen gas is also released in the reaction?

Solution:

According to the law of conservation of masses (A. Lavoisier): The mass of substances that react, always equal to the mass of substances that are formed as a result of the reaction.
$2 \mathrm{MgO}=2 \mathrm{Mg}+\mathrm{O}_{2} ;$
$m(\mathrm{MgO})=m(\mathrm{Mg})+\mathrm{m}\left(\mathrm{O}_{2}\right) ;$
$m\left(\mathrm{O}_{2}\right)=\mathrm{m}(\mathrm{MgO})-\mathrm{m}(\mathrm{Mg})=16.12-9.72=6.4 \mathrm{~g}$.
Answer: 6.4 g .

