Question \#72910, Chemistry / Other / Completed

A 3.7122 g sample of an unknown salt containing ferrous ion was dissolved and diluted to 250.0 mL . Repeat 25.00 mL samples of the total solution were titrated with $0.01860 \mathrm{M} \mathrm{KMnO4}$ solution, and the mean of three accepted corrected titration volumes was 19.00 mL . Calculate the $\% \mathrm{w} / \mathrm{w}$ of iron in the original sample mass.

State your answer to 2 places after the decimal place. Do not enter units.

Solution

$$
\mathbf{C}_{a}=\frac{\mathbf{C}_{t} \mathbf{V}_{t} \mathbf{M}}{\mathbf{V}_{a}}
$$

where Ca is the concentration of the analyte, typically in molarity; Ct is the concentration of the titrant, typically in molarity; Vt is the volume of the titrant used, typically in liters; M is the mole ratio of the analyte and reactant from the balanced chemical equation; and $V a$ is the volume of the analyte used, typically in liters.

$$
\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{Fe}^{2+} \longrightarrow 5 \mathrm{Fe}^{3+}+\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}
$$

The quantity of Fe^{2+} ions are 5 times more than that of KMnO_{4} by the reaction. So $\mathrm{M}=5$ The concentration of Fe^{2+} :
$\mathrm{C}_{\mathrm{a}}=\mathrm{C}_{\mathrm{t}} \mathrm{V}_{\mathrm{t}} \mathrm{M} / \mathrm{V}_{\mathrm{a}}=0.01860 \mathrm{M} \cdot 19.00 \mathrm{~mL} \cdot 5 / 25 \mathrm{~mL}=0.07068 \mathrm{M}$
$\mathrm{n}\left(\mathrm{Fe}^{2+}\right)=0.07068 \mathrm{M} \cdot 0.250 \mathrm{~L}=0.01767 \mathrm{~mol}-$ in 250 mL of the solution
$\mathrm{m}\left(\mathrm{Fe}^{2+}\right)=\mathrm{n} \cdot \mathrm{M}=0.01767 \mathrm{~mol} \cdot 55.85 \mathrm{~g} / \mathrm{mol}=0.9868695 \mathrm{~g}$
$\% \mathrm{w} / \mathrm{w}\left(\mathrm{Fe}^{2+}\right)=0.9868695 \mathrm{~g} \cdot 100 \% / 3.7122 \mathrm{~g}=26.58 \%$

Answer: 26.58.

