Question:

Consider a solution that is made by dissolving 5.2 g of hydrogen iodide in 2.0 L of pure water at 24 degrees celsius.
A. what is the hydronium ion concentration of this solution?
B. what is the pH of this solution?
C. what is the hydroxide ion concentration of this solution?
D. what is the pOH of this solution?

Solution:

$$
\begin{gathered}
n(H I)=\frac{m(H I)}{M(H I)}=\frac{5.2 \mathrm{~g}}{127.9 \frac{\mathrm{~g}}{\mathrm{~mol}}}=0.0407 \mathrm{~mol} \\
C_{M}(H I)=\frac{n(H I)}{V(\text { solution })}=\frac{0.0407 \mathrm{~mol}}{2 L}=0.020 \mathrm{M}=2.0 \times 10^{-2} \mathrm{M} \\
\mathrm{H}_{2} \mathrm{O}+\mathrm{HI}=\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{l}^{-}
\end{gathered}
$$

A. HI is a very strong acid, therefore $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathrm{C}_{\mathrm{M}}(\mathrm{HI})=2.0 \times 10^{-2} \mathrm{M}$
B. $\mathrm{pH}=-\lg \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2$
D. $\mathrm{pOH}=\mathrm{pKw}-\mathrm{pH}=14-2=12$
C. $\left[\mathrm{OH}^{-}\right]=10^{-\mathrm{pOH}}=10^{-12} \mathrm{M}$

Answer:

A. $\mathrm{C}_{\mathrm{M}}(\mathrm{HI})=2.0 \times 10^{-2} \mathrm{M}$
B. $\mathrm{pH}=2$
C. $\left[\mathrm{OH}^{-}\right]=10^{-12}$
D. $\mathrm{pOH}=12$

