Question:

1. How many kmols are in 890 cg of sodium phosphate?

Solution:

$1 \mathrm{cg}=0.01 \mathrm{~g}$
$890 \mathrm{cg}=8.90 \mathrm{~g}$
$\mathrm{M}\left(\mathrm{Na}_{3} \mathrm{PO}_{4}\right)=163.9 \mathrm{~g} / \mathrm{mol}$
$\mathrm{n}\left(\mathrm{Na}_{3} \mathrm{PO}_{4}\right)=\frac{\mathrm{m}\left(\mathrm{Na}_{3} \mathrm{PO}_{4}\right)}{\mathrm{M}\left(\mathrm{Na}_{3} \mathrm{PO}_{4}\right)}=\frac{8.90 \mathrm{~g}}{163.9 \frac{\mathrm{~g}}{\mathrm{~mol}}}=0.0543 \mathrm{~mol}$
$1 \mathrm{~mol}=10^{-3} \mathrm{kmol}$
$0.0543 \mathrm{~mol}=5.43 \times 10^{-5} \mathrm{kmol}$

Answer:

$5.43 \times 10^{-5} \mathrm{kmol} \mathrm{Na}_{3} \mathrm{PO}_{4}$

Question:

2. How many pg are in 365 amol of potassium perchlorate?

Solution:

$1 \mathrm{amol}=10^{-18} \mathrm{~mol}$
$365 \mathrm{amol}=3.65 \times 10^{-16} \mathrm{~mol}$
$\mathrm{M}\left(\mathrm{KClO}_{4}\right)=138.6 \mathrm{~g} / \mathrm{mol}$
$\mathrm{m}\left(\mathrm{KClO}_{4}\right)=\mathrm{n}\left(\mathrm{KClO}_{4}\right) \times \mathrm{M}\left(\mathrm{KClO}_{4}\right)=3.65 \times 10^{-16} \mathrm{~mol} \times 138.6 \frac{\mathrm{~g}}{\mathrm{~mol}}=5.06 \times 10^{-14} \mathrm{~g}$
$1 \mathrm{~g}=10^{12} \mathrm{pg}$
$5.06 \times 10^{-14} \mathrm{~g}=0.0506 \mathrm{pg}$.

Answer:

$0.0506 \mathrm{pg} \mathrm{KClO}_{4}$

Question:

3. How many damol are in 1000 dg of arsenic (III) sulfide?

Solution:

$1 \mathrm{dg}=0.1 \mathrm{~g}$
$1000 \mathrm{dg}=100 \mathrm{~g}$
$\mathrm{M}\left(\mathrm{As}_{2} \mathrm{~S}_{3}\right)=246.0 \mathrm{~g} / \mathrm{mol}$
$\mathrm{n}\left(\mathrm{As}_{2} \mathrm{~S}_{3}\right)=\frac{\mathrm{M}\left(\mathrm{As}_{2} \mathrm{~S}_{3}\right)}{\mathrm{M}\left(\mathrm{As}_{2} \mathrm{~S}_{3}\right)}=\frac{100 \mathrm{~g}}{246.0 \mathrm{~g} / \mathrm{mol}}=0.407 \mathrm{~mol}$
$1 \mathrm{~mol}=0.1$ damol
$0.407 \mathrm{~mol}=0.0407$ damol
Answer:
0.0407 damol $\mathrm{As}_{2} \mathrm{~S}_{3}$

Question:

4. How many hg are in 740.00 fg of barium hydroxide?

Solution:

$1 \mathrm{fg}=10^{-15} \mathrm{~g}$
$1 \mathrm{hg}=10^{2} \mathrm{~g}$
$740.00 \mathrm{fg} \times \frac{10^{-15} \mathrm{~g}}{1 \mathrm{fg}} \times \frac{1 \mathrm{hg}}{10^{2} \mathrm{~g}}=7.4000 \times 10^{-15} \mathrm{hg}$

Answer:

$7.4000 \times 10^{-15} \mathrm{hg} \mathrm{Ba}(\mathrm{OH})_{2}$

