Question \#72126, Chemistry / Inorganic Chemistry

If 183.7 g of KClO_{3} is completely burned catalytically. What volume of the oxygen gas will be obtain at 39 c at 1200 torr pressure.

Answer:

$2 \mathrm{KClO}_{3}=2 \mathrm{KCl}+3 \mathrm{O}_{2}$
Moles of KClO_{3} :

$$
n\left(\mathrm{KClO}_{3}\right)=\frac{m\left(\mathrm{KClO}_{3}\right)}{M\left(\mathrm{KClO}_{3}\right)}=\frac{183.7 \mathrm{~g}}{122.55 \frac{\mathrm{~g}}{\mathrm{~mol}}}=1.499 \mathrm{~mol}
$$

According to chemical equation:

$$
n\left(\mathrm{O}_{2}\right)=\frac{3}{2} \times n\left(\mathrm{KClO}_{3}\right)=\frac{3}{2} \times 1.499 \mathrm{~mol}=2.2485 \mathrm{~mol}
$$

Gas law:

$$
\begin{gathered}
p V=n R T \\
p=1200 \text { torr }=159986.8 \mathrm{~Pa} \\
T=39^{\circ} \mathrm{C}=312.15 \mathrm{~K} \\
V=\frac{n R T}{p}=\frac{2.2485 \mathrm{~mol} \times 8.31 \frac{\mathrm{~J}}{\mathrm{~K} \times \mathrm{mol}} \times 312.15 \mathrm{~K}}{159986.8 \mathrm{~Pa}}=0.0365 \mathrm{~m}^{3}=36.5 \mathrm{~L}
\end{gathered}
$$

Answer provided by AssignmentExpert.com

