Answer on Question \#71652-Chemistry - Physical Chemistry

Question:

Calculate the pH of a 0.1 M solution of sodium acetate. What is the percent hydrolysis?

Solution:

Firstly, let's consider the sodium acetate hydrolysis reaction equation:

$$
\mathrm{Na}^{+}+\mathrm{Ac}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HAc}+\mathrm{Na}^{+}+\mathrm{OH}^{-} ;
$$

Or in the short form:

$$
\mathrm{Ac}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HAc}+\mathrm{OH}^{-} .
$$

The percent hydrolysis is the ratio:

$$
h, \%=100 \% \cdot \frac{[H A c]}{[H A c]+\left[A c^{-}\right]}=100 \% \cdot \frac{[H A c]}{0.1 M} .
$$

As one could see from the reaction equation, the hydrolysis of sodium acetate runs preferentially on anion, as anion is a weak acid and cation is a strong base. To get the equilibrium concentration of acetic acid, we can use the equilibrium constant of this reaction:

$$
K=\frac{[H A c]\left[O H^{-}\right]}{\left[A c^{-}\right]} .
$$

As one can see, this equation can be expressed as a protonation of acetate anion with the water ionization taken into account.
The constant of protonation of acetate anion $\log K a=4.76$ and it corresponds to the following equation:

$$
\begin{gathered}
A c^{-}+H^{+} \leftrightarrow H A c \\
K_{p}=\frac{[H A c]}{\left[A c^{-}\right]\left[H^{+}\right]}=10^{4.76} .
\end{gathered}
$$

The ionization of water is expressed by the constant:

$$
K_{w}=\left[H^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14} .
$$

Thus, now we can get the hydrolysis constant as a function of protonation and water ionization constants:

$$
K=\frac{[H A c]\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{Ac}^{-}\right]\left[\mathrm{H}^{+}\right]}=K_{p} K_{w}=10^{4.76} \cdot 10^{-14}=10^{-9.24}
$$

Finally, we can consider the equilibrium concentration of acetate $\left[A c^{-}\right]$as $\left[A c^{-}\right]=0.1-$ $[\mathrm{HAc}]$ and presume that $[\mathrm{HAc}]=\left[\mathrm{OH}^{-}\right]$. So:

$$
10^{-9.24}=\frac{[H A c]^{2}}{0.1-[H A c]}
$$

As $[H A c] \ll 0.1:$

$$
\begin{gathered}
10^{-9.24}=\frac{[H A c]^{2}}{0.1} \\
{[H A c]=\sqrt{0.1 \cdot 10^{-9.24}}=7.6 \cdot 10^{-6} \mathrm{M}}
\end{gathered}
$$

The pH is:

$$
\left[O H^{-}\right]=7.6 \cdot 10^{-6} \mathrm{M} ; \mathrm{pH}=14-p O H=8.88
$$

The percent of hydrolysis is:

$$
h, \%=100 \% \cdot \frac{[H A c]}{0.1 M}=100 \% \cdot \frac{7.6 \cdot 10^{-6} M}{0.1 M}=0.0076 \%
$$

Answer: $\mathrm{pH}=8.88 ; 0.0076 \%$ hydrolysis occurred.

