Answer on Question \#71550 - Chemistry - Physical Chemistry

Question:

Calculate ΔS (for the system) when the state of 3.00 mol of a monatomic perfect gas, for which $C p, m=5 / 2 R$, is changed from 250 C and 1.00 atm to 1250 C and 5.00 atm . How do you rationalize the sign of ΔS ?

Solution:

The change in entropy of ideal gas is

$$
d S=c_{v} \frac{d T}{T}+\frac{P}{T} d v ;
$$

And after simplification and integration from the state 1 to the state 2 :

$$
\Delta S=c_{v} \ln \left(\frac{T_{2}}{T_{1}}\right)+R \ln \left(\frac{v_{2}}{v_{1}}\right)
$$

Using the equation of state for the ideal gas:

$$
\begin{gathered}
p v=n R T \\
v=\frac{n R T}{p} ; c_{v}=c_{p}-R \\
\Delta S=\left(c_{p}-R\right) \ln \left(\frac{T_{2}}{T_{1}}\right)+R \ln \left(\frac{n R T_{2} p_{1}}{p_{2} n R T_{1}}\right)=\left(c_{p}-R\right) \ln \left(\frac{T_{2}}{T_{1}}\right)+R \ln \left(\frac{T_{2} p_{1}}{p_{2} T_{1}}\right) \\
\Delta S=\left(\frac{5}{2} R-R\right) \ln \left(\frac{125+273 K}{25+273 K}\right)+R \ln \left(\frac{(125+273 K) \cdot 1 \mathrm{~atm}}{(25+273 \mathrm{~K}) \cdot 5 \mathrm{~atm}}\right) \\
\Delta S=\frac{3}{2} R \cdot 0.289+R \cdot(-1.320)=-0.886 \cdot R
\end{gathered}
$$

As one can know, $\Delta \mathrm{S}$ represents the degree of randomness in the system. Thus, one can expect that with the increase of temperature the randomness with increase; but with increase in pressure the randomness will decrease. Apparently, as the calculated value is negative, the latter effect is more significant and the degree of randomness decreases.

Answer: $\Delta S=-0.886 R$. Negative sign of ΔS means that the degree of randomness in the system decreases when state1 passes to state 2.

Answer provided by https://www.AssignmentExpert.com

