a 0.8870 g sample containing only NaCl and KCL was treated with AgNO . the AgCl formed had a mass of 1.913 g . Calculate the $\% \mathrm{Na}$ and $\% \mathrm{~K}$ in the sample.

Solution:

$$
\text { Let's take } m(\mathrm{NaCl})=x \text { and } m(\mathrm{KCl})=y
$$

The resulting chemical reactions:

```
    x m1
```

$\mathrm{NaCl}+\mathrm{AgNO}=\mathrm{AgCl}+\mathrm{NaNO} \quad \mathrm{m} 1=143.32 \mathrm{x} / 58.44=2.45 \mathrm{x}(\mathrm{g})$
$58.44 \mathrm{~g} \quad 143.32 \mathrm{~g}$

y	m 2
$\mathrm{KCl}+\mathrm{AgNO3}$	$=\mathrm{AgCl}+\mathrm{KNO3}$
74.55 g	143.32 g

$\mathrm{m} 1+\mathrm{m} 2=1.913 \mathrm{~g}$ (according to the condition of the problem)
$2.45 x+1.92 y=1.913$
$\mathrm{m}(\mathrm{NaCl})+\mathrm{m}(\mathrm{KCl})=0.8870 \mathrm{~g}$ (according to the condition of the problem)
$x+y=0.8870$

We get the system of equations:

```
2.45x+1.92y=1.913
```

$x+y=0.8870$

Let's solve it:
$2.45(0.8870-y)+1.92 y=1.913$
$2.173-0.53 y=1.913$
$y=0.49$
$x=0.887-0.49=0.397$

Let's calculate the $\% \mathrm{Na}$ and $\% \mathrm{~K}$ in the sample:
$\% \mathrm{Na}=(0.397 / 0.8870) * 100 \%=44.76 \%$
\%K $=(0.49 / 0.8870) * 100 \%=55.24 \%$
Answer: \%Na $=44.76 \%$; \%K = 55.24\%

