Answer on Question \#70670, Chemistry / General Chemistry:

Consider a tray that is 25 cm by 40 cm . The mass of the gold plated on the top surface of the tray is 3.86 grams . Given that the density of gold is $19.3 \mathrm{~g} / \mathrm{cm}^{\wedge} 3$ determine the thickness of the gold on the top of the tray. I need the answers for the following: length, width, mass, density, volume, area, and thickness, put in the calculations so I can see how you got the answers.

Solution.

$$
\begin{aligned}
& l=25 \mathrm{~cm}=0,25 \mathrm{~m} \\
& b=40 \mathrm{~cm}=0,4 \mathrm{~m} \\
& \rho=19,3 \mathrm{~g} / \mathrm{cm}^{3} \\
& m=3,86 \mathrm{~g}
\end{aligned}
$$

$d-$?

Weight - m
Density - ρ
Length - I
Width - b
Thickness - d
Area - S
Volume-V

Solution weight:

$$
\mathrm{m}=\rho \cdot \mathrm{V}
$$

Volume, volume is the product of length and width and thickness:
$V=l \cdot b \cdot d$
So we get the formula:
$\mathrm{m}=\rho \cdot l \cdot b \cdot d$
$d=\frac{m}{\rho \cdot l \cdot b}$
Substitute in the formula numerical data:
$d=\frac{m}{\rho \cdot l \cdot b}=\frac{3,86 \mathrm{~g}}{19,3 \mathrm{~g} / \mathrm{cm}^{3} \cdot 25 \mathrm{~cm} \cdot 40 \mathrm{~cm}}$
$d=2 \cdot 10^{-4} \mathrm{~cm}=2 \cdot 10^{-6} \mathrm{~m}$
Answer: $d=2 \cdot 10^{-4} \mathrm{~cm}=2 \cdot 10^{-6} \mathrm{~m}$.

