Answer on Question \#70650-Chemistry - General Chemistry

Question: The combustion of hydrocarbons is used in many areas of life, from cooking to heating to manufacturing. Octane is a medium sized liquid fuel molecule. It will burn according to the unbalanced chemical reaction: $\mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})=\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$. Suppose you are given 1.00 liter of octane (density $=0.703 \mathrm{~g} / \mathrm{cm}^{3}$). How many grams of carbon dioxide will be produced?

Solution

1) write the balanced chemical equation of the octane combustion:

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}(l)+25 \mathrm{O}_{2}(g)=16 \mathrm{CO}_{2}(g)+18 \mathrm{H}_{2} \mathrm{O}(l)
$$

2) calculate the mass of octane:

$$
m\left(C_{8} H_{18}\right)=V\left(C_{8} H_{18}\right) * \rho\left(C_{8} H_{18}\right)=1000 * 0.703=703 \mathrm{~g}
$$

3) calculate the mass of carbon dioxide from the balanced reaction equation using the molar masses of octane and carbon dioxide $\left(\mathrm{M}\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)=114 \mathrm{~g} / \mathrm{mol}, \mathrm{M}\left(\mathrm{CO}_{2}\right)=44 \mathrm{~g} / \mathrm{mol}\right)$:

$$
m\left(\mathrm{CO}_{2}\right)=\frac{m\left(\mathrm{C}_{8} \mathrm{H}_{18}\right) * 16 M\left(\mathrm{CO}_{2}\right)}{2 M\left(C_{8} H_{18}\right)}=\frac{703 * 16 * 44}{2 * 114} \approx 2170.67 \mathrm{~g}
$$

Answer: the mass of carbon dioxide is 2170.67 g .
Answer provided by https://www.AssignmentExpert.com

