Answer on Question \#70647 - Chemistry - Other

Task:

In a reversible reaction $\mathrm{CO}_{2}+\mathrm{H}_{2}=\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}$, the concentration of CO_{2} is $0.70 \mathrm{~mole} / \mathrm{dm}^{3}$ and of H_{2} is $80.38 \mathrm{~mole} / \mathrm{dm}^{3}$ and the concentrations of CO and $\mathrm{H}_{2} \mathrm{O}$ are each 9.46 mole $/ \mathrm{dm}^{3}$. What is the value of the equilibrium constant K .
A) 0.168 ;
B) 0.233 ;
C) 0.628 ;
D) 1.591 .

Solution:

Reaction equation:

$$
\mathrm{CO}_{2}+\mathrm{H}_{2}=\mathrm{CO}+\mathrm{H}_{2} \mathrm{O}
$$

The expression for the equilibrium constant:

$$
K=\frac{\left[\mathrm{H}_{2} \mathrm{O}\right] *[\mathrm{CO}]}{\left[\mathrm{H}_{2}\right] *\left[\mathrm{CO}_{2}\right]}
$$

Then,

$$
K=\frac{\left[\mathrm{H}_{2} \mathrm{O}\right] *[\mathrm{CO}]}{\left[\mathrm{H}_{2}\right]^{*}\left[\mathrm{CO}_{2}\right]}=\frac{9.46^{\mathrm{mole}} / \mathrm{dm}^{3} * 9.46^{\text {mole }} / \mathrm{dm}^{3}}{80.38^{\mathrm{mole}} / \mathrm{dm}^{3} * 0.70^{\mathrm{mole}} / \mathrm{dm}^{3}}=1.5905
$$

Answer: D) 1.591.

