Answer on Question \#70636- Chemistry - General Chemistry

Question: Theoretically, in a single replacement reaction using 5.000 grams of copper (II) nitrate trihydrate [Cu(NO3)2 • 3 H 2 O], which has a molar mass of $241.6 \mathrm{~g} / \mathrm{mole}$, how much copper [At. Wt. $=63.55 \mathrm{~g} / \mathrm{mole}$] in grams would be obtained?

Solution: A single replacement reaction is a reaction in which one element is substituted for another element in a compound. The starting materials are always pure elements plus an aqueous compound. When a replacement reaction occurs, a new aqueous compound and a different pure element will be generated as products. In general, elements that form anions can replace the anion in a compound, and elements that form cations can replace the cation in a compound. The general pattern of a single replacement reaction for $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ is shown below: $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{Me} \rightarrow \mathrm{Cu}+\mathrm{MeNO}_{3}$
Only pure salt enters the exchange reaction, so first of all you need to determine the mass of salt without crystallization water.
$\mathrm{Mr}\left(\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}\right)=241.6 \mathrm{~g} / \mathrm{mole}$
$\mathrm{Mr}\left(\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}\right)=\mathrm{Mr}\left(\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}\right)-\mathrm{Mr}\left(\mathrm{H}_{2} \mathrm{O}\right)=241.6 \mathrm{~g} / \mathrm{mole}-(3 \cdot 18 \mathrm{~g} / \mathrm{mole})=187.6 \mathrm{~g} / \mathrm{mole}$ Then solving simple proportion:
$\mathrm{Mr}\left(\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}\right)-\mathrm{m}\left(\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}\right.$
$\mathrm{Mr}\left(\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}\right)-\mathrm{m}\left(\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}\right.$
i.e.
$241.6 \mathrm{~g} / \mathrm{mole}-5.000 \mathrm{~g}$
$187.6 \mathrm{~g} / \mathrm{mole}-\mathrm{xg}$
$\mathrm{x}=3.882 \mathrm{~g}$
$\mathrm{n}\left(\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}\right)=\mathrm{m}\left(\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} / \mathrm{Mr}\left(\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}\right)=3.882 \mathrm{~g} / 187.6 \mathrm{~g} / \mathrm{mole}=0.0207\right.$ mole
$\mathrm{n}(\mathrm{Cu})=\mathrm{n}\left(\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}\right)=0.0207$ mole for single replacement reaction, and
$\mathrm{m}(\mathrm{Cu})=\mathrm{n}(\mathrm{Cu}) \cdot$ At. Wt. $(\mathrm{Cu})=0.0207 \mathrm{~mole} \cdot 63.55 \mathrm{~g} / \mathrm{mole}=1.315485 \mathrm{gram}$

Answer: would be obtained $\mathbf{1 . 3 1 5}$ gram of copper

