Question \#70146 - Chemistry - General Chemistry

How many moles of NaClO 3 are needed to produce 6.00 moles of SO 2 in the following two-step reaction?

$$
\begin{aligned}
& 2 \mathrm{NaClO} 3->2 \mathrm{NaCl}+3 \mathrm{O} 2 \\
& \mathrm{~S}+\mathrm{O} 2 \text {-> SO2 }
\end{aligned}
$$

Solution

Find how many moles of O_{2} are needed to produce 6.00 moles of SO_{2} :

$$
\begin{array}{cc}
\mathrm{S}+\mathrm{O}_{2} & ->\mathrm{SO}_{2} \\
1 & 1 \\
? & 6
\end{array}
$$

$n\left(O_{2}\right)=\left(1^{*} 6\right) / 1=6$ moles
Then find how many moles of NaClO_{3} are needed to produce 6.00 moles of O_{2} :

$2 \mathrm{NaClO}_{3}->$	$2 \mathrm{NaCl}+3 \mathrm{O}_{2}$
2	3
$?$	6

$n\left(\mathrm{NaClO}_{3}\right)=(2 * 6) / 3=4$ moles

Answer

It has to be 4 moles of NaClO_{3} to produce 6.00 moles of SO_{2}

