Answer on Question # 69998, Chemistry / Inorganic Chemistry

Calculate the wavelength of the light required to eject a photoelectron from caesium metal with a kinetic energy of 2.0×10^{-19} J (v for caesium is 4.55×10^{14} Hz)?

Solution:

1. Calculate the general energy:

$$K_{max} = h \times f - \Phi_0$$

$$K_{max} = 6.63 \times 10^{-34} \times 4.55 \times 10^{14} - 2.0 \times 10^{-19} = 1.0 \times 10^{-19} (J)$$

2. Calculate the wavelength:

$$K_{max} = \frac{h \times c}{\lambda} \Rightarrow \lambda = \frac{h \times c}{K_{max}}$$
$$\lambda = \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{1.0 \times 10^{-19}} = 198.9 \times 10^{-8} (m)$$

Answer: 198.9×10^{-8} (m).