Answer on Question \#69907 - Chemistry - Organic Chemistry

Question:

A $30 \mathrm{~cm}^{3}$ sample of butane, $\mathrm{C}_{4} \mathrm{H}_{10}$, was completely reacted in a limited supply of oxygen to produce $60 \mathrm{~cm}^{3}$ of carbon dioxide and $60 \mathrm{~cm}^{3}$ of carbon monoxide.

All volumes were measured at room temperature and pressure.
Which volume of oxygen was used?

Solution:

Unbalanced equation of reaction is as follows:

$$
\mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{O}_{2} \rightarrow \mathrm{CO}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} .
$$

Let's balance it taking into account the fact that volumes of produced gases, carbon dioxide and carbon monoxide, are equal and thus their quantities (in numbers of molecules) are equal:

$$
\mathrm{C}_{4} \mathrm{H}_{10}+n \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}+2 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}
$$

(Here numbers 2 preceding CO and CO_{2} are chosen to balance Carbon, and number 5 preceding $\mathrm{H}_{2} \mathrm{O}$ is chosen to balance Hydrogen.)

The unknown n satisfies $2 n=2+2 \times 2+5$, hence $n=\frac{11}{2}$. Thus,

$$
\mathrm{C}_{4} \mathrm{H}_{10}+\frac{11}{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}+2 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}
$$

The volume of oxygen used is $\frac{11}{4}$ greater than volume of CO or CO_{2} produced:

$$
V=\frac{11}{2} \times \frac{60 \mathrm{~cm}^{3}}{2}=165 \mathrm{~cm}^{3}
$$

Answer:
$165 \mathrm{~cm}^{3}$.
Answer provided by https://www.AssignmentExpert.com

