Answer on Question \#69337, Chemistry, General Chemistry

How many moles of $\mathrm{Ba}(\mathrm{OH})_{2}$ are required to make 1.0 L of solution in which the OH concentration is 0.050 M ?
(1) 0.025
(2) 0.050
(3) 0.10
(4) 2.0
(5) 0.15

Solution:

Barium hydroxide is a strong base, that's why the dissociation process is:
$\mathrm{Ba}(\mathrm{OH})_{2} \rightarrow \mathrm{Ba}^{+2}+2 \mathrm{OH}^{-}$
The concentration of OH^{-}- ions equals 0.050 M . It means that concentration of $\mathrm{Ba}(\mathrm{OH})_{2}$ is $0.050 / 2$ $=0.025 \mathrm{M}$, according to dissociation process.

If we know the molar concentration and the volume of solution, we can determine the number of moles of $\mathrm{Ba}(\mathrm{OH})_{2}$, using formulae:
$\mathrm{C}\left(\mathrm{Ba}(\mathrm{OH})_{2}\right)=\frac{n(\mathrm{Ba}(\mathrm{OH}) 2)}{V}$, where n is number of moles; V is volume of solution.
So:
$\mathrm{n}\left(\mathrm{Ba}(\mathrm{OH})_{2}\right)=\mathrm{C}\left(\mathrm{Ba}(\mathrm{OH})_{2}\right) \cdot \mathrm{V}=0.025 \cdot 1.0=0.025(\mathrm{~mol})$
Answer: (1) 0.025.
Answer provided by https://www.AssignmentExpert.com

