## Answer on Question \#69336, Chemistry, General Chemistry

Answer the following for the reaction:
$\mathrm{NiCl}_{2}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Ni}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{NaCl}(\mathrm{aq})$

1) How many grams of $\mathrm{Ni}(\mathrm{OH})_{2}$ are produced from the reaction of 35.0 mL of 1.75 M NaOH ?
2) How many milliliters of 0.200 M NaOH solution are needed to react with 34.0 mL of a 0.430 M $\mathrm{NiCl}_{2}$ solution?
3) What is the molarity of 30.0 mL of a $\mathrm{NiCl}_{2}$ solution that reacts completely with 17.0 mL of a 0.250 M NaOH solution?

## Solution:

1) According to given chemical reaction, we can calculate mass of $\mathrm{Ni}(\mathrm{OH})_{2}$. The mass of sodium hydroxide equals:
$\mathrm{m}(\mathrm{NaOH})=\mathrm{C}(\mathrm{NaOH}) \cdot \mathrm{M}(\mathrm{NaOH}) \cdot \mathrm{Vsol}$, where C is a molar concentration; M is a molar mass of $\mathrm{NaOH} ;$ Vsol - volume of solution.

So:

$$
\begin{gathered}
\mathrm{m}(\mathrm{NaOH})=1.75 \cdot 40 \cdot 0.035=2.45(\mathrm{~g}) \\
2.45 \mathrm{~g} \quad \mathrm{Xg} \\
\mathrm{NiCl}_{2}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Ni}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{NaCl}(\mathrm{aq}) \\
2 \cdot 40=80 \quad 92.71
\end{gathered}
$$

Make a proportion:
$\mathrm{X}=\frac{2.45 \cdot 92.71}{80}=2.84(\mathrm{~g})$
So, the mass of $\mathrm{Ni}(\mathrm{OH})_{2}$ is 2.84 grams.
2) In equivalent point we have interaction:
$n\left(\mathrm{NiCl}_{2}\right)=n(\mathrm{NaOH})$, where n is number of moles.
Or:
$\mathrm{C}\left(\mathrm{NiCl}_{2}\right) \cdot \mathrm{V}\left(\mathrm{NiCl}_{2}\right)=\mathrm{C}(\mathrm{NaOH}) \cdot \mathrm{V}(\mathrm{NaOH})(1)$
Using last equation, we can determine the volume of NaOH :
$\mathrm{V}(\mathrm{NaOH})=\frac{C(\mathrm{NiCl2}) \cdot \mathrm{V}(\mathrm{NiCl2})}{C(\mathrm{NaOH})}=\frac{0.430 \cdot 34.0}{0.200}=73.1(\mathrm{~mL})$

It means, that 73.1 milliliters of 0.200 M NaOH solution are needed to react with 34.0 mL of a $0.430 \mathrm{M} \mathrm{NiCl}_{2}$ solution.
3) Using equation (1), we can calculate the molarity of $\mathrm{NiCl}_{2}$ :
$\mathrm{C}\left(\mathrm{NiCl}_{2}\right)=\frac{C(\mathrm{NaOH}) \cdot \mathrm{V}(\mathrm{NaOH})}{V(\mathrm{NiCl2})}=\frac{0.250 \cdot 17.0}{30.0}=0.142(\mathrm{M})$
It means, that 30.0 mL of a $0.142 \mathrm{M} \mathrm{NiCl}_{2}$ solution reacts completely with 17.0 mL of a 0.250 M NaOH solution.

Answer: 1) 2.84 g ; 2) 73.1 mL ; 3) 0.142 M .
Answer provided by https://www.AssignmentExpert.com

