Answer on Question #69336, Chemistry, General Chemistry

Answer the following for the reaction:

 $NiCl_2(aq)+2NaOH(aq) \rightarrow Ni(OH)_2(s)+2NaCl(aq)$

1) How many grams of Ni(OH)₂ are produced from the reaction of 35.0 mL of 1.75 M NaOH?

2) How many milliliters of 0.200M NaOH solution are needed to react with 34.0 mL of a 0.430 M NiCl₂ solution?

3) What is the molarity of 30.0 mL of a NiCl₂ solution that reacts completely with 17.0 mL of a 0.250 M NaOH solution?

Solution:

1) According to given chemical reaction, we can calculate mass of Ni(OH)₂. The mass of sodium hydroxide equals:

 $m(NaOH) = C(NaOH) \cdot M(NaOH) \cdot Vsol$, where C is a molar concentration; M is a molar mass of NaOH; Vsol – volume of solution.

So:

m(NaOH) = 1.75·40·0.035 = 2.45 (g)

2.45 g X g

 $NiCl_2(aq)+2NaOH(aq) \rightarrow Ni(OH)_2(s)+2NaCl(aq)$

Make a proportion:

 $X = \frac{2.45 \cdot 92.71}{80} = 2.84 \text{ (g)}$

So, the mass of $Ni(OH)_2$ is 2.84 grams.

2) In equivalent point we have interaction: $n(NiCl_2) = n(NaOH)$, where n is number of moles. Or: $C(NiCl_2) \cdot V(NiCl_2) = C(NaOH) \cdot V(NaOH)$ (1) Using last equation, we can determine the volume of NaOH: $V(NaOH) = \frac{C(NiCl_2) \cdot V(NiCl_2)}{C(NaOH)} = \frac{0.430 \cdot 34.0}{0.200} = 73.1$ (mL) It means, that 73.1 milliliters of 0.200M NaOH solution are needed to react with 34.0 mL of a 0.430 M NiCl₂ solution.

3) Using equation (1), we can calculate the molarity of NiCl₂: $C(NiCl_2) = \frac{C(NaOH) \cdot V(NaOH)}{V(NiCl_2)} = \frac{0.250 \cdot 17.0}{30.0} = 0.142 \text{ (M)}$ It means, that 30.0 mL of a 0.142 M NiCl₂ solution reacts completely with 17.0 mL of a 0.250 M NaOH solution.

Answer: 1) 2.84 g; 2) 73.1 mL; 3) 0.142 M.

Answer provided by https://www.AssignmentExpert.com