Answer on Question \#69092 - Chemistry - General Chemistry

For the reaction, calculate how many grams of the product form when 2.8 g of Cl${ }_{2}$ completely reacts.
Assume that there is more than enough of the other reactant.
$2 \mathrm{Na}(\mathrm{s})+\mathrm{Cl}_{2}$ (g) $\rightarrow 2 \mathrm{NaCl}$ (s)

Solution:

$$
\begin{aligned}
& 2 \mathrm{Na}(\mathrm{~s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NaCl}(\mathrm{~s}) \\
& \mathrm{m}\left(\mathrm{Cl}_{2}\right)=2.8 \mathrm{~g} \\
& \mathrm{n}\left(\mathrm{Cl}_{2}\right)=\frac{m\left(\mathrm{Cl}_{2}\right)}{M\left(\mathrm{Cl}_{2}\right)}=\frac{2.8}{2 \cdot 35.5}=\frac{2.8}{71}
\end{aligned}
$$

The Cl_{2} refers to NaCl as 1 to 2 (proceeding from equation): $\frac{n\left(\mathrm{Cl}_{2}\right)}{n(\mathrm{NaCl})}=\frac{1}{2} ; \mathrm{n}(\mathrm{NaCl})=2 \cdot n\left(\mathrm{Cl}_{2}\right)$
$\mathrm{n}(\mathrm{NaCl})=2 \cdot \frac{2.8}{71}=\frac{5.6}{71}$
$m(\mathrm{NaCl})=n(\mathrm{NaCl}) \cdot \mathrm{M}(\mathrm{NaCl})=\frac{5.6}{71} \cdot 58.5=\frac{327.6}{71}=4.61 \mathrm{~g}$

Answer: 4.61 g of NaCl

