Lactic acid, CH3CHOHCOOH, is a monoprotic, weak acid that is produced by muscle activity. It is also produced from milk by the action of bacteria. What is the pH of a 0.12 mol/L solution of lactic acid if the acid dissociation constant (Ka) is 1.3 x 10-4? What does it mean that it is a "weak" acid?

Solution

Weak acids don't dissociate completely in the solutions – there is always some amount of unionized molecules.

$$CH_3CHOHCOOH \leftrightarrow H^+ + CH_3CHOHCOO^-$$

The acid dissociation constant:

v _	$[H^+][CH_3CHOHCOO^-]$
n _A -	[CH ₃ CHOHCOOH]

The ICE table:

	<i>СН₃СНОНСООН</i>	\leftrightarrow	H⁺	<i>СН₃СНОНСОО⁻</i>
(1)	0.12 M		0	0
(C)	-x		+ <i>x</i>	+x
(E)	0.12 - x		x	x

Substitution of these values into the K_A equation:

$$1.3 \times 10^{-4} = \frac{x \times x}{0.12 - x}$$
$$1.3 \times 10^{-4} = \frac{x^2}{0.12 - x}$$

As the K_A is three orders of magnitude smaller than the concentration of the acid, we can use the approximation:

$$1.3 \times 10^{-4} \approx \frac{x^2}{0.12}$$

$$x^2 \approx 0.156 \times 10^{-4}$$

$$x \approx \sqrt{0.156 \times 10^{-4}} \approx 3.95 \times 10^{-3}$$

$$[H^+] = 3.95 \times 10^{-3}$$

$$pH = -\log[H^+] = -\log[3.95 \times 10^{-3}] = 2.40$$

Answer: pH = 2.40

Answer provided by www.AssignmentExpert.com