Answer on Question \# 69909, Chemistry, General Chemistry

Lactic acid, CH 3 CHOHCOOH , is a monoprotic, weak acid that is produced by muscle activity. It is also produced from milk by the action of bacteria. What is the $\mathbf{p H}$ of a $0.12 \mathrm{~mol} / \mathrm{L}$ solution of lactic acid if the acid dissociation constant(Ka)is $1.3 \times 10-4$?What does it mean that it is a "weak"acid?

Solution

Weak acids don't dissociate completely in the solutions - there is always some amount of unionized molecules.

$$
\mathrm{CH}_{3} \mathrm{CHOHCOOH} \leftrightarrow \mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{CHOHCOO}^{-}
$$

The acid dissociation constant:

$$
K_{A}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{CHOHCOO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{CHOHCOOH}\right]}
$$

The ICE table:

	$\mathrm{CH}_{3} \mathrm{CHOHCOOH}$	\leftrightarrow	H^{+}	
	(I)	0.12 M		0
0				
(C)	$-x$		$+x$	$+x$
(E)	$0.12-x$		x	x

Substitution of these values into the K_{A} equation:

$$
\begin{aligned}
& 1.3 \times 10^{-4}=\frac{x \times x}{0.12-x} \\
& 1.3 \times 10^{-4}=\frac{x^{2}}{0.12-x}
\end{aligned}
$$

As the K_{A} is three orders of magnitude smaller than the concentration of the acid, we can use the approximation:

$$
\begin{gathered}
1.3 \times 10^{-4} \approx \frac{x^{2}}{0.12} \\
x^{2} \approx 0.156 \times 10^{-4} \\
x \approx \sqrt{0.156 \times 10^{-4}} \approx 3.95 \times 10^{-3} \\
{\left[H^{+}\right]=3.95 \times 10^{-3}} \\
p H=-\log \left[H^{+}\right]=-\log \left[3.95 \times 10^{-3}\right]=2.40
\end{gathered}
$$

Answer: $\mathbf{p H}=\mathbf{2 . 4 0}$

