Answer on the question \#68800, Chemistry / Other

Question:

calculate the vapour pressure of aqueous 0.01 M glucose solution at 300 Kelvin temperature the vapour pressure of water is 0.03 bar at 300 Kelvin temperature.

Solution:

According to Raoult's law, the pressure for a single component p_{i} in an ideal solution is stated as:

$$
p_{i}=p_{0} x_{i}
$$

where p_{0} is the vapour pressure of the pure component i and x_{i} is its molar fraction. Let's calculate the molar fraction of water in 0.01 M aqueous glucose solution:

$$
\begin{gathered}
x_{a q}=\frac{n_{a q}}{n_{a q}+n_{g c}} \\
c_{g c}=\frac{n_{g c}}{V_{s o l}} ; n_{g c}=c_{g c} V_{s o l}
\end{gathered}
$$

Let's substitute the number of the moles of glucose:

$$
x_{a q}=\frac{1}{1+n_{g c} / n_{a q}}=\frac{1}{1+c_{g c} V_{s o l} / n_{a q}}
$$

Assuming that the volume of solution is equal to the volume of water:

$$
\begin{gathered}
x_{a q}=\frac{1}{1+\frac{c_{g c} V_{a q}}{n_{a q}}}=\frac{1}{1+\frac{c_{g c} M_{a q}}{d_{a q}}} \\
x_{a q}=\frac{1}{1+0.01(M) \cdot \frac{18.01528(g / m o l)}{998.2(g / L)}} \\
x_{a q}=0.99981955
\end{gathered}
$$

Finally, we can calculate the vapour pressure:

$$
p_{a q}=0.03(\text { bar }) \cdot 0.99981955=0.029995(\text { bar })
$$

Answer: 0.029995(bar)

