Answer on the Question \#68350, Chemistry / General chemistry

Consider the equilibrium
$\mathrm{N} 2(\mathrm{~g})+\mathrm{O} 2(\mathrm{~g})+\mathrm{Br} 2(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NOBr}(\mathrm{g})$
Calculate the equilibrium constant Kp for this reaction, given the following information (at 300 K):
$2 \mathrm{NO}(\mathrm{g})+\mathrm{Br} 2(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NOBr}(\mathrm{g}) \mathrm{Kc}=2.0$
$2 \mathrm{NO}(\mathrm{g}) \rightleftharpoons \mathrm{N} 2(\mathrm{~g})+\mathrm{O} 2(\mathrm{~g}) \mathrm{Kc}=2.3 \times 1030$

Solution:

1) $2 \mathrm{NO}(\mathrm{g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NOBr}(\mathrm{g}) \mathrm{K}_{\mathrm{c}}=2.0$
2) $2 \mathrm{NO}(\mathrm{g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O} 2(\mathrm{~g}), \mathrm{K}_{\mathrm{c}}=2.3 \times 10^{30}$

If we divide 2 reactions we will get wanted reaction:

$$
\frac{[\mathrm{NOBr}]^{2}}{[\mathrm{NO}]^{2}[\mathrm{Br}]} \cdot \frac{[\mathrm{NO}]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{O}_{2}\right]}=\frac{[\mathrm{NOBr}]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{O}_{2}\right][\mathrm{Br}]}
$$

So if 1) divided by 2) gives you the ratio you want, then $\mathrm{K}_{\mathrm{c} 1} / \mathrm{K}_{\mathrm{c} 2}$ give us the K_{c} for the studied reaction:

$$
K_{c}=\frac{K_{c 1}}{K_{c 2}}=\frac{2.0}{2.3 \cdot 10^{30}}=8.7 \cdot 10^{-31}
$$

The Kc can be converted to Kp by the ratio in which RT will be in the dominator:

$$
K_{p}=\frac{K_{c}}{R T}=\frac{8.7 \cdot 10^{-31}}{8.314 \cdot 300}=3.5 \cdot 10^{-34}
$$

