Answer on Question \#67878-Chemistry - General Chemistry

Task:

A metal hydroxide has the formula $\mathrm{M}(\mathrm{OH}) 2$. An aqueous solution of this hydroxide has a concentration 6.16 g per liter $30 \mathrm{~cm}^{3}$ of this solution required $24 \mathrm{~cm}^{3}$ of acid solution containing $5.67 \mathrm{~g} / \mathrm{dm}^{-3}$ of nitric acid for complete neutralization. Calculate:
a) The molarity of the metallic hydroxide
b) Relative atomic mass of the metal M

Solution:

Let's write down the reaction of chemical interaction:

$$
\mathrm{Me}(\mathrm{OH})_{2}+2 \mathrm{HNO}_{3}=\mathrm{Me}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

By the reaction equation: $n\left(\mathrm{Me}(\mathrm{OH})_{2}\right)=n\left(\mathrm{HNO}_{3}\right) / 2$
Then, $\quad \mathrm{C}\left(\mathrm{Me}(\mathrm{OH})_{2}\right) * V\left(\mathrm{Me}(\mathrm{OH})_{2}\right)=\frac{\mathrm{C}\left(\mathrm{HNO}_{3}\right) * V\left(\mathrm{HNO}_{3}\right)}{2}$
Let's find the molar concentration of HNO_{3} :
$C\left(\mathrm{HNO}_{3}\right)=\frac{n\left(\mathrm{HNO}_{3}\right)}{V\left(\mathrm{HNO}_{3}\right)}=\frac{m\left(\mathrm{HNO}_{3}\right)}{M\left(\mathrm{HNO}_{3}\right) * V\left(\mathrm{HNO}_{3}\right)}$
$M\left(\mathrm{HNO}_{3}\right)=63.012 \mathrm{~g} / \mathrm{mol} ;$
$C\left(\mathrm{HNO}_{3}\right)=\frac{5.67 \mathrm{~g}}{63.012 \mathrm{~g} / \mathrm{mol}^{*} 1 \mathrm{~L}}=0.08998 \mathrm{~mol} / \mathrm{L} \approx 0.09 \mathrm{~mol} / \mathrm{L}$
Let's find the molar concentration (molarity) of $\mathrm{Me}(\mathrm{OH})_{2}$):
$C\left(\mathrm{Me}(\mathrm{OH})_{2}\right)=\frac{C\left(\mathrm{HNO}_{3}\right) * V\left(\mathrm{HNO}_{3}\right)}{2 * V\left(\mathrm{Me}(\mathrm{OH})_{2}\right)}=\frac{0.09 \mathrm{~mol} / \mathrm{L}^{* 24 \mathrm{~cm}^{3}}}{2 * 30 \mathrm{~cm}^{3}}=0.036 \mathrm{~mol} / \mathrm{L}$

Let's find atomic mass of the metal Me :

$$
\begin{aligned}
& C\left(\mathrm{Me}(\mathrm{OH})_{2}\right)=\frac{n\left(\mathrm{Me}(\mathrm{OH})_{2}\right)}{V\left(\mathrm{Me}(\mathrm{OH})_{2}\right)} ; \\
& C\left(\mathrm{Me}(\mathrm{OH})_{2}\right)=\frac{\mathrm{m}\left(\mathrm{Me}(\mathrm{OH})_{2}\right)}{M\left(\mathrm{Me}(\mathrm{OH})_{2}\right) * V\left(\mathrm{Me}(\mathrm{OH})_{2}\right)} ; \Rightarrow \mathrm{M}\left(\mathrm{Me}(\mathrm{OH})_{2}\right)=\frac{\mathrm{m}\left(\mathrm{Me}(\mathrm{OH})_{2}\right)}{V\left(\mathrm{Me}(\mathrm{OH})_{2}\right) * C\left(\mathrm{Me}(\mathrm{OH})_{2}\right)} ; \\
& M\left(\mathrm{Me}(\mathrm{OH})_{2}\right)= \\
& \\
& \\
& \quad \begin{array}{l}
\quad \frac{6.16 \mathrm{~g}}{1 L^{*} 0.036 \mathrm{~mol} / \mathrm{L}}=171.11 \mathrm{~g} / \mathrm{mol} \\
\\
\quad 171.11=\operatorname{Ar}(\mathrm{Me})+2 * 16+2 * 1 ; \\
\\
\quad \operatorname{Ar}(\mathrm{Me})=137.11
\end{array}
\end{aligned}
$$

This metal is barium (Ba). A metal hydroxide $=\mathrm{Ba}(\mathrm{OH})_{2}$.

Answer: 1) The molarity of the metallic hydroxide is $0.036 \mathrm{~mol} / \mathrm{L}$;
2) Atomic mass of the metal M is 137.11 . This is barium (Ba).

