Answer on Question \#67810 - Chemistry - General Chemistry

Question: Given: 17 L of steam cools from 100.0 celcius to -10.0 celcius.
$\mathrm{SH}_{\text {fusion }}=300 \mathrm{~J} / \mathrm{g}$
$\mathrm{SH}_{\text {ice }}=2.0 \mathrm{~J} / \mathrm{g} \mathrm{K}$
$\mathrm{SH}_{\text {water }}=4.0 \mathrm{~J} / \mathrm{g} \mathrm{K}$
SH vaporization $=2300 \mathrm{~J} / \mathrm{g}$

SH stands for standard heat

Question: 17 L of steam at 100.0 degrees celcius is \qquad g water? So how many grams of water?

Solution

We can find the mass of given volume gas at any temperature from the ideal gas law equation:

$$
p * V=n * R * T
$$

Because $\mathrm{n}=\mathrm{m} / \mathrm{M}$, where m - mass, M - molar mass, we can derive the equation

$$
p * V=\frac{m * R * T}{M}
$$

And finally

$$
m=\frac{p * V * M}{R * T}
$$

We have to express the temperature in kelvins ($100^{\circ} \mathrm{C}=373.15 \mathrm{~K}$). As nothing is mentioned about the pressure, we assume that the pressure is 1 atm (101.313 kPa for the equation). R is the gas constant ($8.314 \mathrm{~J} / \mathrm{mol}^{*} \mathrm{~K}$), molar mass of water is $18 \mathrm{~g} / \mathrm{mol}$. So the mass of water will be

$$
m\left(\mathrm{H}_{2} \mathrm{O}\right)=\frac{101.313 * 17 * 18}{8.314 * 373.15}=9.993 g
$$

Answer: $\mathrm{m}\left(\mathrm{H}_{2} \mathrm{O}\right)=9.993 \mathrm{~g}$.
Answer provided by https://www.AssignmentExpert.com

