8.4 g of mixture of potassium hydroxide and potassium chloride were made up to 1 litre of aqueous solution. $20 \mathrm{~cm}^{3}$ of this solution required $24.2 \mathrm{~cm}^{3}$ of 0.1 mole of nitric acid for neutralization. Calculate the percentage by mass of potassium chloride in the mixture?

Answer:

First of all neutralization reaction undergoes according to equation:
$\mathrm{KOH}+\mathrm{HNO}_{3}=\mathrm{KNO}_{3}+\mathrm{H}_{2} \mathrm{O}$
$C_{M}=n / V \quad n=C_{M} \cdot V$
$n(\mathrm{KOH})=\mathrm{n}\left(\mathrm{HNO}_{3}\right)=0.1 \cdot(24.2 / 1000)=0.002 \mathrm{~mol}$
$n=m / M \quad m=n \cdot M$
$\mathrm{M}(\mathrm{KOH})=56 \mathrm{~g} / \mathrm{mol}$
$m(\mathrm{KOH})=0.002 \cdot 56=0.14 \mathrm{~g}$
Mass of KOH in 1 litre: $(0.14 / 20) \cdot 1000=6.8 \mathrm{~g}$
Mass of $\mathrm{KCl}: 8.4-6.8=1.6 \mathrm{~g}$
$\%(\mathrm{KCl})=(1.6 / 8.4) \cdot 100=19 \%$

