Answer on Question \#67786-Chemistry - General Chemistry

Task:

What is the [Cl^{-}] of a solution made by dissolving 0.981 g calcium chloride ($\mathrm{MM}=110.98 \mathrm{~g} / \mathrm{mol}$) in a final volume 500.0 mL ?

Solution:

Let's find the amount of calcium chloride substance:

$$
n\left(\mathrm{CaCl}_{2}\right)=\frac{m\left(\mathrm{CaCl}_{2}\right)}{M\left(\mathrm{CaCl}_{2}\right)}=\frac{0.981 \mathrm{~g}}{110.98 \mathrm{~g} / \mathrm{mol}}=0.00884 \text { moles of } \mathrm{CaCl}_{2}
$$

Let's find the molar concentration of calcium chloride

$$
C_{m}\left(\mathrm{CaCl}_{2}\right)=\frac{n\left(\mathrm{CaCl}_{2}\right)}{V(\text { solution })}=\frac{0.00884 \mathrm{~mol}}{0.5 \mathrm{~L}}=0.01768 \mathrm{~mol} / \mathrm{L}
$$

Let us write down the dissociation of calcium chloride in solution:

$$
\mathrm{CaCl}_{2} \square \quad \mathrm{Ca}^{2+}+2 \mathrm{Cl}^{-}
$$

Then,
$C_{m}\left(\mathrm{CaCl}_{2}\right)=\left[\mathrm{Ca}^{2+}\right]=\frac{\left[\mathrm{Cl}^{-}\right]}{2}$;
$\left[\mathrm{Cl}^{-}\right]=C_{m}\left(\mathrm{CaCl}_{2}\right) * 2=0.01768 \mathrm{~mol} / \mathrm{L}^{*} 2=0.03536 \mathrm{~mol} / \mathrm{L}$

Answer: $\left[\mathrm{Cl}^{-}\right]=0.03536 \mathrm{~mol} / \mathrm{L}$.

