Question:

A sample of hydrogen exerts a pressure of 0.389 ATM and has a volume of 7.0 L the pressure increases to 3.35 ATM at constant temperature what will its new volume be?

Solution:

The ideal gas is described by the law

$$
P V=n R T
$$

where P is the pressure, V is the volume, n is the amount in moles, T is the temperature, and R is the ideal gas constant. From this law, the volume, V is

$$
V=\frac{n R T}{P} .
$$

With fixed values of n and T (R is fixed as it is a constant), the volume changes inversely to the pressure:

$$
\frac{V_{1}}{V_{2}}=\frac{P_{2}}{P_{1}} \rightarrow V_{2}=\frac{P_{1}}{P_{2}} V_{1}
$$

Thus,
$\mathrm{V}_{2}=7 \times 0.389 / 3.35=0.813(\mathrm{~L})$

Answer:

The volume of the gas would be 0.813 L .

