Question:
How many mLof 6.0 M hydrochloric acid, HCl is needed to generate 940 mL of carbon dioxide gas at room temperature and pressure. (Hint: gas law to determinate moles carbon dioxide with given variables, moles carbon dioxide to moles HCl , solve for volume of HCl using Molarity and the moles HCl

Solution:

Room temperature: $\mathrm{T}=15-25^{\circ} \mathrm{C}=288-298 \mathrm{~K}$;
Room pressure: $\mathrm{p}=101325 \mathrm{~Pa}$;
$\mathrm{V}\left(\mathrm{CO}_{2}\right)=940 \mathrm{~mL}=940 \mathrm{~cm}^{3}=0.00094 \mathrm{~m}^{3}$;
The equation of state of an ideal gas (sometimes the Mendeleev-Clapeyron equation or the Clapeyron equation):
$p \cdot V=n \cdot R \cdot T ;$
For carbon dioxide: $n=\frac{p \cdot V}{R \cdot T}$
$n=\frac{101325 \cdot 0.00094}{8.314 \cdot 288}=0.040 \mathrm{~mol}$;
$n^{\prime}=\frac{101325 \cdot 0.00094}{8.314 \cdot 298}=0.038 \mathrm{~mol}$;
$\mathrm{n}(\mathrm{HCl})=2 \mathrm{n}\left(\mathrm{CO}_{2}\right)=0.080 \mathrm{~mol}(0.076 \mathrm{~mol})$;
$V(\mathrm{HCl})=\frac{n}{c}$;
$V=\frac{0.080}{6}=0.0133 L=13.3 \mathrm{~mL}$;
$V=\frac{0.076}{6}=0.0127 L=12.7 \mathrm{~mL}$;
Answer: $\mathrm{V}(\mathrm{HCl})=12.7-13.3 \mathrm{~mL}$.

