Answer on Question \#67541-Chemistry - Other

Task:

A tire contains a mixture of gases with the following partial pressures: $\mathrm{Po}_{2}=51.3 \mathrm{kPa}, \mathrm{Pco}_{2}=0.10$ $\mathrm{kPa}, \mathrm{Pn}_{2}=191.3 \mathrm{kPa}$, and P others $=2.3 \mathrm{kPa}$. Calculate the total pressure as described by daltons law of partial pressures
a) 101.3 kpa ;
b) 183.7 kpa ;
c) 242.7 kpa ;
d) 245.0 kpa .

Solution:

Dalton's law states that in a mixture of non-reacting gases, the total pressure exerted is equal to the sum of the partial pressures of the individual gases.
Mathematical expression:

$$
P_{\text {total }}=\sum_{i}^{n} \chi_{i} \cdot P_{i} \quad \text { or } \quad P_{\text {total }}=P_{1}+P_{2}+\ldots+P_{i}
$$

Where P_{i} represent the partial pressures of each component. χ_{i} is the mole fraction of the i th component in the total mixture of n components .
Then,

$$
\begin{aligned}
& P_{\text {total }}=P_{O_{2}}+P_{\mathrm{CO}_{2}}+P_{\mathrm{N}_{2}}+P_{\text {Others }} ; \\
& P_{\text {total }}=51.3 \mathrm{kPa}+0.1 \mathrm{kPa}+191.3 \mathrm{kPa}+2.3 \mathrm{kPa}=245 \mathrm{kPa} .
\end{aligned}
$$

Answer: D) $\mathrm{P}_{\text {Total }}=245 \mathrm{kPa}$.

