A solution is made by adding 70.00 grams of sodium acetate to 400.0 mL of 0.60 $\mathrm{mol} / \mathrm{L}$ solution of acetic acid.
a.What is the pH of the solution?

System described above is the buffer solution. pH of such kind of solutions calculates by the following formula:

$$
p H=7+\frac{1}{2} p K_{a}+\frac{1}{2} \lg C_{N a A c}
$$

where

$$
\begin{aligned}
& p K_{a}=-\lg K_{H A c}=4.76[1] \\
& \qquad C_{N a A c}=\frac{m(N a A c)}{M(N a A c) * V}=\frac{70}{82.03 * 0.4}=2.13 \mathrm{~mol} / \mathrm{L} \\
& p H=7+\frac{1}{2} * 4.76+\frac{1}{2} \lg 2.13=9.5441
\end{aligned}
$$

b. 10.0 mL of 2.0 M of sodium hydroxide solution was added to the solution above. alculate the new pH .
So, concentration of sodium acetate was changed:

$$
\begin{gathered}
C_{N a A c}^{\prime}=\frac{C_{N a A c} * V+C_{N a O H} * V_{N a O H}}{V+V_{N a O H}}=\frac{2.13 * 0.4+0.01 * 2}{0.41}=2.126 \\
p H=7+\frac{1}{2} * 4.76+\frac{1}{2} \lg 2.126=9.5438
\end{gathered}
$$

c. 10.0 mL of 2.0 M of hydrochloric solution was added to the solution in part a.

Calculate the new pH .
in this case pH calculates with the following formula:

$$
\begin{gathered}
p H=7+\lg C_{H C l}^{\prime}+\frac{1}{2} p K_{a}+\frac{1}{2} \lg C_{N a A C} \\
C_{H C l}^{\prime}=\frac{C_{N a A C} * V_{H C l}}{V+V_{H C l}}=\frac{0.01 * 2}{0.41} \\
p H=7-1.31+2.38+0.16=8.23
\end{gathered}
$$

[1] Ripin, D. H.; Evans, D. A. (4 November 2005). "pKa Table" (PDF). Archived from the original (PDF) on 22 July 2015. Retrieved 19 July 2015.

