\#67080 Chemistry, Other

The ratio of the acceleration due to gravity inside a deep mine and that on the surface of the earth is 0.99 . Find the depth of the mine, assuming that the density of the earth is uniform throughout and the radius of the earth is 6300 km ?

Answer:

$\mathrm{g} / \mathrm{g}_{1}=0.99$
$\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{g}_{1}=9.81 / 0.99=9.91 \mathrm{~m} / \mathrm{s}^{2}$

$$
\begin{gathered}
g_{h}=g\left(1-\frac{2 h}{R}\right) \\
9.91=9.81 \cdot\left(1-\frac{2 h}{6300}\right) \\
\left.9.91=9.81-\frac{19,62 \cdot h}{6300}\right) \\
\frac{19,62 \cdot h}{6300}=-0.1 \\
h=-32.11 m
\end{gathered}
$$

Therefore, mine depth is around 32 m .

