Answer on Question \#66797 - Chemistry | Inorganic Chemistry

Using Bohr atomic model, derive expression for calculating the radius of orbits in He^{+}. Using this expression, calculate the radius of fourth orbit of He^{+}ion

Solution:

1. Derivation of expression for calculating the radius of orbits in He^{+}. Bohr atomic model:

$$
\begin{gathered}
F_{\text {centrifugal }}=-m v^{2} / r \\
F_{\text {coulombic }}=-Z e^{2} / r^{2} \\
\frac{m v^{2}}{r}=\frac{Z e^{2}}{r^{2}} \Rightarrow r=\frac{m v^{2} r^{2}}{Z e^{2}} \\
r=\frac{m v^{2} r^{2}}{Z e^{2}} \times \frac{m}{m}=\frac{m^{2} v^{2} r^{2}}{m Z e^{2}}=\frac{(m v r)^{2}}{m Z e^{2}}
\end{gathered}
$$

Quantum hypothesis:

$$
m v r=n h / 2 \pi
$$

So:

$$
r=\frac{n^{2} h^{2}}{4 \pi^{2} m Z e^{2}}
$$

For the Hydrogen atom $(Z=1)$, the smallest radius $(n=1)$ will be:

$$
a_{0}=\frac{1 * h^{2}}{4 \pi^{2} m * 1 * e^{2}}=0.529 \AA
$$

$a_{0}-B o h r$ radius, constant
So:

$$
r=\frac{n^{2} a_{0}}{Z}
$$

For He^{+}ion $(\mathrm{Z}=2)$, the calculation of radius is:

$$
r=\frac{n^{2} a_{0}}{2}
$$

2. Calculation of the radius of fourth orbit of He^{+}ion.

$$
n=4
$$

$$
r=\frac{4^{2} \times 0.529 \AA}{2}=4.232 \AA
$$

Answer: The radius of fourth orbit of He^{+}ion is $4.232 \AA$.
Answer provided by http://www.AssignmentExpert.com/

