Answer on Question \#66702, Chemistry, General Chemistry

$3 \mathrm{Al}(\mathrm{s})+3 \mathrm{NH}_{4} \mathrm{ClO}_{4}(\mathrm{~s}) \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{AlCl}_{3}(\mathrm{~s})+3 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
If 90.0 g of Al is reacted determine the mass of nitrogen monoxide produced.

Solution:

Molar mass of Aluminium is $\mathrm{M}=26.98 \mathrm{~g} / \mathrm{mol}$
Molar mass of Nitrogen monoxide is $\mathrm{M}=30.01 \mathrm{~g} / \mathrm{mol}$
Using the chemical reaction between Al and NH 4 ClO 4 :
$90.0 \mathrm{~g} \quad \mathrm{Xg}$
$3 \mathrm{Al}(\mathrm{s})+3 \mathrm{NH}_{4} \mathrm{ClO}_{4}(\mathrm{~s}) \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{AlCl}_{3}(\mathrm{~s})+3 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
3•26.98
3•30.01
We can determine the mass of nitrogen monoxide NO produced, according to proportion:
$\frac{90.0}{3 \cdot 26.98}=\frac{X}{3 \cdot 30.01}$
Where X is mass of NO:
$X=\frac{90.0 \cdot 3 \cdot 30.01}{3 \cdot 26.98}=100.1(\mathrm{~g})$
So, the mass of nitrogen monoxide equals 100.1 grams.
Answer: $\mathrm{m}(\mathrm{NO})=100.1 \mathrm{~g}$.

Answer provided by https://www.AssignmentExpert.com

