Answer on the question \#66415, Chemistry / Other

Question:

If you start with 11.8 g of C 3 H 8 and 5.44 g of O 2 which one is the limiting reagent?

Solution:

The reaction equation is:

$$
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

Thus, the relation of number of the moles of propane and oxygen is 1 to 5 :

$$
n\left(C_{3} H_{8}\right)=\frac{n\left(O_{2}\right)}{5}
$$

Let's calculate the number of the moles of propane and oxygen from their masses:

$$
\begin{aligned}
n\left(C_{3} H_{8}\right) & =\frac{m\left(C_{3} H_{8}\right)}{M\left(C_{3} H_{8}\right)}=\frac{11.8(\mathrm{~g})}{44.0956\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)}=0.2676(\mathrm{~mol}) \\
n\left(O_{2}\right) & =\frac{m\left(O_{2}\right)}{M\left(O_{2}\right)}=\frac{5.44(\mathrm{~g})}{31.9988\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)}=0.1700(\mathrm{~mol})
\end{aligned}
$$

When we multiply the number of the moles of propane by 5 , we get the number of the moles of oxygen required for complete combustion: $0.2676 * 5=1.338$ (mol). The number of the moles of oxygen given is less:
$0.1700<1.338$

Thus, oxygen is the limiting reagent.

Answer: Oxygen is the limiting reagent, as it's number of the moles is inferior to the number of the moles required for combustion of 11.8 g of propane.

