Answer on Question \#66271 - Chemistry - Organic Chemistry

Task:

Given a 1.35 g sample of $\mathrm{O}_{2}(\mathrm{FM}=32.00)$. How many liters of volume would it have at $39^{\circ} \mathrm{C}$ and 879 mmHg pressure?

Solution:

The ideal gas law is often written as $p V=n R T$;
$n=\frac{m}{M} ;$
$p V=\frac{m}{M} R T$.

1) Convert all data into proper units
$R=0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{K} \cdot \mathrm{mol} ;$
$\mathrm{T}=39^{\circ} \mathrm{C}+273=312 \mathrm{~K}$;
$P=879 \mathrm{~mm} \mathrm{Hg}(1 \mathrm{~atm} / 760 \mathrm{~mm} \mathrm{Hg})=1.1566$ atm
2) We calculate now:
$V=\frac{m\left(O_{2}\right) R T}{p M\left(O_{2}\right)} ;$
$V\left(O_{2}\right)=\frac{1.35 \cdot 0.0821 \cdot 312}{1.1566 \cdot 32}=0.9343(L)$.

Answer: 0.9343 liters of O_{2}.

